Code: AE63 Subject: ELECTROMAGNETICS & RADIATION SYSTEMS

AMIETE – ET

Time: 3 Hours

JUNE 2013

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

0.1 Choose the correct or the best alternative in the following:

 (2×10)

a. The total charge within some finite volume is

(A)
$$\int_{\text{vol}} \rho_{\text{v}} d\text{v}$$

(B)
$$\int_{\text{vol}} \frac{\rho_{\text{v}} dv}{r}$$

(C)
$$\int_{\text{vol}} \frac{\rho_{\text{v}}}{r^2} dv$$

(D)
$$\int_{s}$$
 D.ds

b. The electric flux density at a point r from the point charge is

$$\textbf{(A)} \ \frac{q}{4\pi \in r}$$

(B)
$$\frac{q}{4\pi r^2}$$

(C)
$$\frac{q}{4\pi r}$$

$$\textbf{(D)} \ \frac{qr}{4\pi \in}$$

c. The potential difference between two points a and b is

$$(\mathbf{A}) - \int_{a}^{b} \mathbf{E} . \mathrm{d}\ell$$

(B)
$$-q \int_{a}^{b} E.d\ell$$

(D) $q \int_{a}^{b} E.ds$

(C)
$$\int_{a}^{b} E.ds$$

(D)
$$q \int_{a}^{b} E.ds$$

d. The capacitance of an isolated spherical conductor of radius a is

(A)
$$\frac{a}{4\pi \in}$$

(B)
$$\frac{q}{4\pi \in a}$$

(C)
$$\frac{4\pi \in}{a}$$

(D)
$$4\pi \in a$$

Code: AE63 Subject: ELECTROMAGNETICS & RADIATION SYSTEMS

e. The poission's equation is

$$(\mathbf{A}) \nabla^2 \mathbf{V} = -\frac{\rho}{c}$$

(B)
$$\nabla^2 V = 0$$

(C)
$$\nabla^2 \overline{D} = \rho$$

(D)
$$\nabla \times \nabla \times \nabla = \rho$$

f. The magnetic vector potential A and magnetic field B are related as

(A)
$$A = \nabla \times B$$

(B)
$$B = \nabla \times A$$

(C)
$$B = \nabla \cdot A$$

(D)
$$A = \nabla \cdot B$$

g. Lorentz force Equation is

(A)
$$F = q(E + v \times B)$$

(B)
$$F = q(v \times B)$$

(C)
$$F = q(B + v \times E)$$

(D)
$$F = qE$$

h. The characteristics impedance of free space is

(A)
$$277\Omega$$

(B)
$$377\Omega$$

(C)
$$477\Omega$$

i. The maximum usable frequency is

(A)
$$f_c \sec \theta$$

(B)
$$f_c \cos \theta$$

(C)
$$f_c \sin \theta$$

(D)
$$f_c \cot \theta$$

j. The length of antenna operating at a frequency of 50MHz is

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Find the expression for Electric field due to line charge.

(8)

b. In the region of free space that includes the volume, 2 < x, y, z < 3, $D = \frac{2}{z^2} \left(yza_x + xza_y - 2xya_z \right) C/m^2.$

- (i) Evaluate the volume integral side of the divergence theorem for the volume defined here.
- (ii) Evaluate the surface integral side for the corresponding closed surface. (8)

Q.3 a. Derive an expression for calculating the capacitance of a parallel-plate capacitor. (8)

ROLL	NO. ,		 	_

Code: AE63 Subject: ELECTROMAGNETICS & RADIATION SYSTEMS

- b. A non uniform electric field is given by E=yi+xj+zk. Determine the work expended in carrying a charge of 2 column from B(1,0,1) to A (0.8,0.6,1) along the shorter path of circle $x^2 + y^2 = 1$, z = 1.
- Q.4 a. Show that the capacitance varies inversely as the square root of the voltage. (8)
 - b. Using the Laplace equation, find the capacitance per unit length of a capacitor formed by two concentric circular cylinders of radius a and b (a < b). (8)
- Q.5 a. The magnetic vector potential in spherical coordinates is given by A=10r $\sin \theta \ I_{\theta}$. Find the flux density at $\left(2, \frac{\pi}{2}, 0\right)$ where I_{θ} is unit vector in the direction of θ .
 - b. Calculate curl H at origin, where $H = 2y i (x^2 + z^2)j + 3yk$ (8)
- Q.6 a. Calculate the force between two linear, parallel, long conductors carrying currents in opposite direction. (8)
 - b. Calculate self inductances and mutual inductances between two co-axial solenoids of radius 2 cm and 3cm carrying currents 2A and 3A having 50 and 80 turns/m respectively.
- Q.7 a. Let $\mu = 10^{-5}$ H/m, $\epsilon = 4 \times 10^{-9}$ F/m, $\sigma = 0$ and $\rho_v = 0$. Find k (including units) so that each of the following pairs of fields satisfies Maxwell's equations:

(i)
$$\overline{D} = 6\overline{a}_x - 2y\overline{a}_y + 2z\overline{a}_z \text{ nC/m}^2$$
, $\overline{H} = kx\overline{a}_x + 10y\overline{a}_y - 25z\overline{a}_z \text{ A/m}$
(ii) $\overline{E} = (20y - kt)\overline{a}_x \text{ V/m}$, $\overline{H} = (y + 2 \times 10^6 \text{ t})\overline{a}_z \text{ A/m}$ (8)

- b. Explain briefly about Retarded Potentials. (8)
- Q.8 a. Describe the following terms in connection with electro-magnetic waves: (8)

 (i) Transverse waves
 (ii) Power density
 (iii) Wave impedance
 (iv) Polarization
 - b. Discuss the characteristics of antennas isolated from surfaces which will alter or change their radiation patterns and efficiency. (8)
- Q.9 a. Explain the radiation resistance of an antenna. (4)
 - b. With sketch, describe the feed mechanism of a parabolic reflector (4)
 - c. Write short notes on:
 (i) Horn Antenna
 (8)
 - (ii) Helical Antenna