\qquad
Code: AE63 Subject: ELECTROMAGNETICS \& RADIATION SYSTEMS

AMIETE - ET

Time: 3 Hours
PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.
NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. The total charge within some finite volume is
(A) $\int_{\mathrm{vol}} \rho_{\mathrm{v}} \mathrm{dv}$
(B) $\int_{\text {vol }} \frac{\rho_{\mathrm{v}} \mathrm{dv}}{\mathrm{r}}$
(C) $\int_{\text {vol }} \frac{\rho_{\mathrm{v}}}{\mathrm{r}^{2}} \mathrm{dv}$
(D) \int_{S} D.ds
b. The electric flux density at a point r from the point charge is
(A) $\frac{\mathrm{q}}{4 \pi \in \mathrm{r}}$
(B) $\frac{\mathrm{q}}{4 \pi \mathrm{r}^{2}}$
(C) $\frac{\mathrm{q}}{4 \pi \mathrm{r}}$
(D) $\frac{\mathrm{qr}}{4 \pi \epsilon}$
c. The potential difference between two points a and b is
(A) $-\int_{a}^{b} \mathrm{E} . \mathrm{d} \ell$
(B) $-\mathrm{q} \int_{\mathrm{a}}^{\mathrm{b}} \mathrm{E} . \mathrm{d} \ell$
(C) \int_{a}^{b} E.ds
(D) $q \int_{a}^{b}$ E.ds
d. The capacitance of an isolated spherical conductor of radius a is
(A) $\frac{\mathrm{a}}{4 \pi \epsilon}$
(B) $\frac{\mathrm{q}}{4 \pi \in \mathrm{a}}$
(C) $\frac{4 \pi \in}{a}$
(D) $4 \pi \in \mathrm{a}$
e. The poission's equation is
(A) $\nabla^{2} V=-\frac{\rho}{c}$
(B) $\nabla^{2} V=0$
(C) $\nabla^{2} \overline{\mathrm{D}}=\rho$
(D) $\nabla \times \nabla \times \nabla=\rho$
f. The magnetic vector potential A and magnetic field B are related as
(A) $\mathrm{A}=\nabla \times \mathrm{B}$
(B) $\mathrm{B}=\nabla \times \mathrm{A}$
(C) $\mathrm{B}=\nabla \cdot \mathrm{A}$
(D) $\mathrm{A}=\nabla \cdot \mathrm{B}$
g. Lorentz force Equation is
(A) $\mathrm{F}=\mathrm{q}(\mathrm{E}+\mathrm{v} \times \mathrm{B})$
(B) $\mathrm{F}=\mathrm{q}(\mathrm{v} \times \mathrm{B})$
(C) $\mathrm{F}=\mathrm{q}(\mathrm{B}+\mathrm{v} \times \mathrm{E})$
(D) $F=q E$
h. The characteristics impedance of free space is
(A) 277Ω
(B) 377Ω
(C) 477Ω
(D) None of these
i. The maximum usable frequency is
(A) $f_{c} \sec \theta$
(B) $\mathrm{f}_{\mathrm{c}} \cos \theta$
(C) $\mathrm{f}_{\mathrm{c}} \sin \theta$
(D) $\mathrm{f}_{\mathrm{c}} \cot \theta$
j. The length of antenna operating at a frequency of 50 MHz is
(A) 5.7 m
(B) 57 m
(C) 570 m
(D) None of these

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.
Q. 2 a. Find the expression for Electric field due to line charge.
b. In the region of free space that includes the volume, $2<x, y, z<3$, $\mathrm{D}=\frac{2}{\mathrm{z}^{2}}\left(\mathrm{yza}_{\mathrm{x}}+\mathrm{xza}_{\mathrm{y}}-2 \mathrm{xya}_{\mathrm{z}}\right) \mathrm{C} / \mathrm{m}^{2}$.
(i) Evaluate the volume integral side of the divergence theorem for the volume defined here.
(ii) Evaluate the surface integral side for the corresponding closed surface. (8)
Q. 3 a. Derive an expression for calculating the capacitance of a parallel-plate capacitor.
b. A non uniform electric field is given by $\mathrm{E}=\mathrm{yi}+\mathrm{xj}+\mathrm{zk}$. Determine the work expended in carrying a charge of 2 column from $\mathrm{B}(1,0,1)$ to $\mathrm{A}(0.8,0.6,1)$ along the shorter path of circle $\mathrm{x}^{2}+\mathrm{y}^{2}=1, \mathrm{z}=1$.
Q. 4 a. Show that the capacitance varies inversely as the square root of the voltage.
b. Using the Laplace equation, find the capacitance per unit length of a capacitor formed by two concentric circular cylinders of radius a and $b(a<b)$.
Q. 5 a. The magnetic vector potential in spherical coordinates is given by $\mathrm{A}=10 \mathrm{r}$ $\sin \theta I_{\theta}$. Find the flux density at $\left(2, \frac{\pi}{2}, 0\right)$.where I_{θ} is unit vector in the direction of θ.
b. Calculate curl H at origin, where
$H=2 y i-\left(x^{2}+z^{2}\right) j+3 y k$
Q. 6 a. Calculate the force between two linear, parallel, long conductors carrying currents in opposite direction.
b. Calculate self inductances and mutual inductances between two co-axial solenoids of radius 2 cm and 3 cm carrying currents 2 A and 3 A having 50 and 80 turns/m respectively.
Q. 7 a. Let $\mu=10^{-5} \mathrm{H} / \mathrm{m}, \quad \in=4 \times 10^{-9} \mathrm{~F} / \mathrm{m}, \sigma=0$ and $\rho_{\mathrm{v}}=0$. Find k (including units) so that each of the following pairs of fields satisfies Maxwell's equations:
(i) $\overline{\mathrm{D}}=6 \overline{\mathrm{a}}_{\mathrm{x}}-2 \mathrm{y} \overline{\mathrm{a}}_{\mathrm{y}}+2 \mathrm{z} \overline{\mathrm{a}}_{\mathrm{z}} \mathrm{nC} / \mathrm{m}^{2}, \overline{\mathrm{H}}=k x \overline{\mathrm{a}}_{\mathrm{x}}+10 \mathrm{y} \overline{\mathrm{a}}_{\mathrm{y}}-25 z \overline{\mathrm{a}}_{\mathrm{Z}} \mathrm{A} / \mathrm{m}$
(ii) $\overline{\mathrm{E}}=(20 \mathrm{y}-\mathrm{kt}) \overline{\mathrm{a}}_{\mathrm{x}} \mathrm{V} / \mathrm{m}, \overline{\mathrm{H}}=\left(\mathrm{y}+2 \times 10^{6} \mathrm{t}\right) \overline{\mathrm{a}}_{\mathrm{z}} \mathrm{A} / \mathrm{m}$
b. Explain briefly about Retarded Potentials.
Q. 8 a. Describe the following terms in connection with electro-magnetic waves:
(i) Transverse waves
(ii) Power density
(iii) Wave impedance
(iv) Polarization
b. Discuss the characteristics of antennas isolated from surfaces which will alter or change their radiation patterns and efficiency.
Q. 9 a. Explain the radiation resistance of an antenna.
b. With sketch, describe the feed mechanism of a parabolic reflector
c. Write short notes on:
(i) Horn Antenna
(ii) Helical Antenna

