\qquad

AMIETE - ET

Time: 3 Hours
Max. Marks: 100
PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. The Laplace transform of a simple RC integrator circuit shown in Fig. 1 is
(A) $\frac{1}{s-a}$
(B) $\frac{1}{s+a}$
(C) $\frac{a}{s-a}$
(D) $\frac{a}{s+a}$
Where $\mathrm{a}=\frac{1}{\mathrm{RC}}$

b. According to initial value theorem, the initial value of $f\left(0^{+}\right)$of a function $f(t)$ is
(A) $\mathrm{f}\left(0^{+}\right)=\lim _{\mathrm{s} \rightarrow 0}[\mathrm{sF}(\mathrm{s})]$
(B) $\mathrm{f}\left(0^{+}\right)=\lim _{\mathrm{s} \rightarrow \infty}[\mathrm{sF}(\mathrm{s})]$
(C) $\mathrm{f}\left(0^{+}\right)=\lim _{\mathrm{s} \rightarrow 0}[\mathrm{~F}(\mathrm{~s})]$
(D) $\mathrm{f}\left(0^{+}\right)=\lim _{\mathrm{s} \rightarrow \infty}[\mathrm{F}(\mathrm{s})]$
c. If the characteristic equation of a system is $s^{2}+8 s+25=0$, the value of ω_{n} and ξ will be
(A) $5 \mathrm{rad} / \mathrm{sec}, 0.8$
(B) $0.5 \mathrm{rad} / \mathrm{sec}, 0.8$
(C) $8 \mathrm{rad} / \mathrm{sec}, 0.5$
(D) $\sqrt{8} \mathrm{rad} / \mathrm{sec}, 5$
d. Number of assymptotes in root locus for the system having open loop transfer function having 5 poles and 2 zero are
(A) 2
(B) 5
(C) 1
(D) 3
e. The transfer function of a system is $\mathrm{H}(\mathrm{s})=\frac{1000}{(1+0.1 \mathrm{~s})(1+0.01 \mathrm{~s})}$ the corner frequencies are
(A) 0.1 and $0.01 \mathrm{rad} / \mathrm{s}$
(B) -0.1 and $-0.01 \mathrm{rad} / \mathrm{s}$
(C) 10 and $100 \mathrm{rad} / \mathrm{s}$
(D) -10 and $-100 \mathrm{rad} / \mathrm{s}$
f. For $\xi=1$, the system is
(A) Over damped
(B) Under damped
(C) Critical damped
(D) Unstable
g. The phase shift of $G(s)=\frac{1}{s^{2}}$ is
(A) 90^{0}
(B) -90^{0}
(C) 180°
(D) -180^{0}
h. By increasing the gain K of the system, the steady state error of the system
(A) increases
(B) decreases
(C) remains unaltered
(D) none of these
i. The resonant peak is given by
(A) $M_{r}=\frac{1}{2 \xi \sqrt{1-\xi^{2}}}$
(B) $\mathrm{M}_{\mathrm{r}}=\frac{1}{\xi \sqrt{1-\xi^{2}}}$
(C) $\mathrm{M}_{\mathrm{r}}=\frac{1}{\xi \sqrt{1+\xi^{2}}}$
(D) $\mathrm{M}_{\mathrm{r}}=\frac{1}{2 \xi \sqrt{1+\xi^{2}}}$
j. For the given block diagram $C(s) / R(s)$ is
(A) $\frac{G(s)}{1-G(s) H(s)}$
(B) $\frac{\mathrm{G}(\mathrm{s})}{1+\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})}$
(C) $\frac{\mathrm{H}(\mathrm{s})}{1-\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})}$

Fig. 2
(D) $\frac{\mathrm{H}(\mathrm{S})}{1+\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})}$

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.
Q. 2 a. Write the differential equation describing the dynamics of the system shown in Fig. 3 and find $\frac{\mathrm{X}_{2}(\mathrm{~s})}{\mathrm{F}(\mathrm{s})}$

Fig. 3
\qquad
b. Obtain the F-I and F-V analogy of (a).
Q. 3 a. In the Fig.4, identify the set of state variables and draw the signal flow graph of the circuit.

Fig. 4
Also, determine transfer function from signal flow graph.
b. Find the overall transfer function of the system in Fig.5.

Fig. 5
Q. 4 a. Explain how the parameter variation is reduced by the use of feedback.
b. What are different controller components? Explain in brief.
Q. 5 a. A second order system with $\xi=0.5$ and $\omega_{\mathrm{n}}=6 \mathrm{rad} / \mathrm{sec}$ is subjected to a unit step input. Determine the rise time, peak time, settling time and peak overshoot.
b. The transfer function of a unity feedback system is $G(s)=\frac{10}{s(s+1)}$.

Find the dynamic error coefficient and steady state error to the input $r(t)=P_{0}+P_{1} t+P_{2} t^{2}$
c. A unity negative feedback control system has open loop transfer function is $G(s)=\frac{K(s+1)(s+2)}{(s+0.1)(s-1)}$ using Routh stability criterion, determine the range of values of K for which the closed loop system has 0,1 or 2 poles in the right half of S plane.
Q. 6 a. The open loop transfer function of feedback system is $\frac{K}{s(s+4)\left(s^{2}+4 s+20\right)}$. Draw root locus for this system.
b. Explain the sensitivity of the roots of the characteristics equation.
Q. 7 a. Why logarithmic scale is used for Bode plot? Sketch the Bode plot for the transfer function $\mathrm{H}(\mathrm{s})=\frac{1000}{(1+0.1 \mathrm{~s})(1+0.001 \mathrm{~s})}$ determine (i) Phase margin (ii) Gain margin.
b. The forward path transfer function of a unity feedback control system is $G(s)=$ $\frac{100}{(s+6.54)}$ find the (i) resonance peak (ii) resonance frequency and (iii) bandwidth.
Q. 8 a. What is the necessity of compensating network? Explain phase lead compensator and give its comparison with phase lag compensator.
b. Design a lead compensator for the system shown in Fig. 6. Given that $\omega_{n}=4$ $\mathrm{rad} / \mathrm{sec}$ and $\xi=0.5$ for compensated system.

Fig. 6
Q. 9 a. A system with state model is $\left[\begin{array}{l}\dot{x}_{1} \\ \dot{x}_{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{2}\end{array}\right]+\left[\begin{array}{l}1 \\ 1\end{array}\right] \mathrm{u}$

Where $u(t)$ is unit step occurring at $t=0$ and $x^{T}(0)=\left[\begin{array}{ll}1 & 0\end{array}\right]$. Obtain the time response of the system and compute state transition matrix.
b. Test the following system for controllability and observability.
$\dot{x}=\left[\begin{array}{ccc}-3 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right] x+\left[\begin{array}{ll}0 & 1 \\ 0 & 0 \\ 2 & 1\end{array}\right] u$ and $y=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 1 & 0\end{array}\right] x$.

