\qquad

AMIETE - ET

Time: 3 Hours
Max. Marks: 100
PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to $\mathbf{Q} .1$ must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. A 100Ω resistance is connected across a 10 V battery. The energy consumed in 5 secs is
(A) 3 Joules
(B) 4 Joules
(C) 5 Joules
(D) 6 Joules
b. The current I_{ab} in the circuit shown in Fig. 1 is
(A) 1 A
(B) 2 A
(C) 3 A
(D) 4A

c. The correct statement is \qquad
(A) $\mathrm{V}_{\mathrm{L}}=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}$ and $\mathrm{i}_{\mathrm{C}}=\mathrm{C} \frac{\mathrm{dv}}{\mathrm{dt}}$
(B) $\mathrm{i}_{\mathrm{L}}=\mathrm{L} \frac{\mathrm{dv}}{\mathrm{dt}}$ and $\mathrm{V}_{\mathrm{C}}=\mathrm{C} \frac{\mathrm{di}}{\mathrm{dt}}$
(C) $\mathrm{V}_{\mathrm{L}}=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}$ and $\mathrm{i}_{\mathrm{L}}=\mathrm{C} \frac{\mathrm{dv}}{\mathrm{dt}}$
(D) $\mathrm{V}_{\mathrm{C}}=\mathrm{L} \frac{\mathrm{dv}}{\mathrm{dt}}$ and $\mathrm{i}_{\mathrm{C}}=\mathrm{C} \frac{\mathrm{di}}{\mathrm{dt}}$
d. Laplace transform of $f(t)=e^{a t} u(t)$ is
(A) $\frac{1}{\mathrm{~s}^{2}}$
(B) $\frac{1}{s+a}$
(C) $\frac{1}{s-a}$
(D) $\frac{1}{(s+a)^{2}}$
e. The Quality factor of a purely resistive circuit is
(A) 0
(B) 1
(C) 1.5
(D) infinite
f. The impedance of one port network $Z(s)=\frac{15\left(s^{3}+2 s^{2}+3 s+2\right)}{s^{4}+6 s^{3}+8 s^{2}}$ indicates
(A) Double pole at origin
(B) Double zeros at origin
(C) Single pole at origin
(D) Single zero at origin
g. The current $\mathrm{i}(\mathrm{t})$ corresponding to transform current $\mathrm{I}(\mathrm{s})=\frac{1}{\mathrm{~s}(\mathrm{~s}+1)}$ is
(A) $\mathrm{i}(\mathrm{t})=\left(1-\mathrm{e}^{-\mathrm{t}}\right) \mathrm{u}(\mathrm{t})$
(B) $\mathrm{i}(\mathrm{t})=\left(1+\mathrm{e}^{-\mathrm{t}}\right) \mathrm{u}(\mathrm{t})$
(C) $\mathrm{i}(\mathrm{t})=\mathrm{e}^{\mathrm{t}} \mathrm{u}(\mathrm{t})$
(D) $\mathrm{i}(\mathrm{t})=\mathrm{e}^{-\mathrm{t}} \mathrm{u}(\mathrm{t})$
h. The Thevenin resistance as seen at $a b$ of the circuit in Fig. 2 is
(A) 5Ω
(B) 8Ω
(C) 10Ω
(D) 12Ω
i. The duty cycle of a square wave is

Fig. 2
(A) 40%
(B) 50%
(C) 60%
(D) All of these
j. The minimum phase function has zeros of transmission on
(A) $\mathrm{j} \omega$ axis only
(B) $\mathrm{j} \omega$ axis or in left half of s-plane
(C) $\mathrm{j} \omega$ axis or right half of s-plane
(D) in left half of s-plane only

Answer any FIVE Questions out of EIGHT Questions.
Each question carries 16 marks.
Q. 2 a. A battery has an internal resistance of 0.5Ω and open circuit voltage of 12 V . What is power lost in the battery and terminal voltage on full load if a resistance of 3Ω is connected across the terminals of the battery?
b. In the Fig.3, find the current in the resistances using node analysis.
c. Find v_{0} using Kirchhoff's laws in the circuit as shown in Fig.4. Given that $r_{1}=1000 \Omega, r_{2}=500 \Omega, r_{3}=50 \Omega, r_{4}=5 \Omega, \alpha=0.5, \beta=2$ and $\mathrm{v}_{\mathrm{s}}=10 \mathrm{~V}$.

Fig. 4
\qquad
Q. 3 a. For the circuit given in Fig.5, switch K is closed at $t=0$. Find the $i, \frac{d i}{d t}$ and $\frac{\mathrm{d}^{2} \mathrm{i}}{\mathrm{dt}^{2}}$ at $\mathrm{t}=0^{+}$.

Fig. 5
b. Find the general solution of the equation $2 \frac{d i}{d t}+i(t)=2 i(t)$ with initial condition at $\mathrm{t}=0, \mathrm{i}=5 \mathrm{~A}$.
c. A voltage of $\mathrm{v}=200 \operatorname{Sin}\left(314 \mathrm{t}-30^{\circ}\right)$ is applied to a $50 \mathrm{mH}, 15 \Omega$ coil; calculate the current and the power factor for the arrangement.
Q. 4 a. Using Laplace transform technique, find i_{2} at $\mathrm{t}=0^{+}$when switch k is closed at $\mathrm{t}=0$ in Fig. 6 .
b. A unit impulse voltage is applied to a series $R C$ circuit at $t=0$ with $R=5 \Omega$ and $\mathrm{C}=2 \mathrm{~F}$. Find $\mathrm{i}(\mathrm{t})$ using Laplace transform, assuming the initial charge stored in the capacitor is zero.

Fig. 6

Fig. 7
Q. 5 a. Determine $\mathrm{Z}(\mathrm{s})$ and $\mathrm{I}(\mathrm{s})$ for the network shown in Fig. 7 using transform network.
b. Consider the network shown in Fig.8. Calculate $\mathrm{i}_{1}(\mathrm{t})$ using Thevenin's theorem.

Fig. 8

Fig. 9
Q. 6 a. Compute the current gain $\alpha_{12}(s)$ and driving point impedance $Z_{12}(s)$ for the network shown in Fig. 9 with $\mathrm{C}_{1}=1 \mathrm{~F}, \mathrm{R}_{1}=1 \Omega$ and $\mathrm{C}_{2}=2 \mathrm{~F}$.
b. A network function is given by $\mathrm{H}(\mathrm{s})=\frac{2 \mathrm{~s}}{(\mathrm{~s}+2)\left(\mathrm{s}^{2}+2 \mathrm{~s}+2\right)}$. Obtain pole-zero diagram.
c. Check the positive realness of the function $F(s)=\frac{s^{2}+10 s+4}{s+2}$.
Q. 7 a. Determine the Z-parameter of the network shown in Fig.10.
b. The Z-parameter of a circuit are given by $\left[\begin{array}{ll}4 & 1 \\ 3 & 3\end{array}\right]$. Obtain the transmission line ABCD parameters.
c. Establish the relation between Impedance parameters (Z) and hybrid parameters (h).

Fig. 10
Q. 8 a. Obtain the driving point impedance of the given network across A-B shown in Fig. 11 using Transform network.
b. The driving point impedance of an LC network is
$Z(s)=\frac{10\left(s^{2}+4\right)\left(s^{2}+16\right)}{s\left(s^{2}+9\right)}$. Obtain Foster form of network.
Q. 9 a. What are the error criteria in any approximation problem in network theory? Derive amplitude approximation for maximally flat low pass filter approximation.
b. Synthesize the voltage ratio $\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=\frac{\mathrm{s}^{2}+1}{\mathrm{~s}^{2}+2 \mathrm{~s}+1}$ as a constant resistance bridgedT network terminated in a 1Ω resistor.

