\qquad

AMIETE - ET/CS/IT

Time: 3 Hours

JUNE 2013

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q. 1 Choose the correct or the best alternative in the following:

a. The invariant points of the bilinear transformation $w=\frac{a z+b}{c z+d}$
(A) $\mathrm{az}^{2}+(\mathrm{b}-\mathrm{c}) \mathrm{z}-\mathrm{d}=0$
(B) $\mathrm{zz}^{2}+(\mathrm{b}+\mathrm{c})+\mathrm{d}=0$
(C) $\mathrm{cz}^{2}+(\mathrm{d}-\mathrm{a}) \mathrm{z}-\mathrm{b}=0$
(D) $\mathrm{cz}^{2}+(\mathrm{d}+\mathrm{a}) \mathrm{z}+\mathrm{b}=0$
b. If $f(a)=\int_{c} \frac{2 z^{2}-z-2}{z-a} d z$ where C is the circle $|z|=2.5$, the value $f(2)$ is
(A) 0
(B) $2 \pi \mathrm{i}$
(C) $4 \pi \mathrm{i}$
(D) $8 \pi \mathrm{i}$
c. Residue of $\frac{1-\mathrm{e}^{2 \mathrm{z}}}{\mathrm{z}^{4}}$ at its pole is
(A) $\frac{4}{3}$
(B) $-\frac{4}{3}$
(C) $\frac{3}{4}$
(D) $-\frac{3}{4}$
d. A unit vector normal to the surface $x^{2} y+2 x z=4$ at the point $(2,-2,3)$ is
(A) $\frac{1}{3}(-\mathrm{i}+2 \mathrm{j}+2 \mathrm{k})$
(B) $\frac{1}{3}(\mathrm{i}-2 \mathrm{j}+2 \mathrm{k})$
(C) $\frac{1}{3}(\mathrm{i}-2 \mathrm{j}-2 \mathrm{k})$
(D) $\frac{1}{3}(\mathrm{i}+2 \mathrm{j}+2 \mathrm{k})$
e. If \vec{A} is a constant vector and $\vec{R}=x i+y j+z k$, then $\operatorname{div}(\vec{A} \times \vec{R})$ is
(A) \vec{A}
(B) \vec{R}
(C) $\vec{A}+\vec{R}$
(D) 0
f. If S is a closed surface enclosing a volume V and if $\vec{R}=x i+y j+z k$, then $\iint_{s} \vec{R} . \hat{N} d s$ is
(A) V
(B) 2 V
(C) 3 V
(D) 4 V
g. If Δ is forward difference operator and interval of differencing is one; $\Delta^{3}[(1-x)(1-2 x)(1-3 x)]$ is equal to
(A) -36
(B) -18
(C) -12
(D) -6
h. The solution of partial differential equation $(y-z) p+(z-x) q=(x-y)$ is
(A) $x^{2}+y^{2}+z^{2}=f(x y z)$
(B) $x^{2}+y^{2}+z^{2}=f(x+y+z)$
(C) $x+y+z=f(x y z)$
(D) None of these
i. If the mean and variance of a binomial variance are 12 and 4 respectively, then the binomial distribution is
(A) $\left(\frac{1}{3}+\frac{2}{3}\right)^{6}$
(B) $\left(\frac{2}{3}+\frac{1}{3}\right)^{12}$
(C) $\left(\frac{1}{3}+\frac{2}{3}\right)^{18}$
(D) $\left(\frac{1}{3}+\frac{2}{3}\right)^{24}$
j. 'A' speaks the truth in 75% cases and ' B ' in 80% of the cases. The percentage of cases in which they are likely to contradict each other in stating the same fact is
(A) 45%
(B) 35%
(C) 30%
(D) 25%

Answer any FIVE Questions out of EIGHT Questions.
 Each question carries 16 marks.

Q. 2 a. Show that every analytic function $f(z)=u(x, y)+i v(x, y)$ defines two families of curves $\mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{C}_{1}$ and $\mathrm{v}(\mathrm{x}, \mathrm{y})=\mathrm{C}_{2}$ which form an orthogonal system.
b. Find the bilinear transformation which maps the points $1, i,-1$ into the points 0 ,

$$
\begin{equation*}
1, \infty . \tag{8}
\end{equation*}
$$

Q. 3 a. State and prove Cauchy's integral formula.
b. Find the Laurent's series expansion of $\frac{Z^{2}-6 Z-1}{(Z-1)(Z-3)(Z+2)}$ in the region $3<|\mathrm{Z}+2|<5$
Q. 4 a. Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $Z=x^{2}+y^{2}-3$ at the point (2, -1,2)
b. Show $\operatorname{div}(\vec{A} \times \vec{B})=\vec{B} \cdot \operatorname{curl} \vec{A}-\vec{A} \cdot \operatorname{curl} \vec{B}$
Q. 5 a. Apply Green's theorem to evaluate $\int[(y-\sin x) d x+\cos x d y]$ where C is the plane triangle enclosed by the lines $\mathrm{y}=0, \mathrm{y}=\frac{2}{\Pi} \mathrm{x}$ and $\mathrm{x}=\frac{\Pi}{2}$.
b. For any closed surface S, use Divergence theorem to evaluate $\int_{S}[x(y-z) i+y(z-x) j+z(x-y) k] . d s$
Q. 6 a. Find an approximate value of $\log _{e} 5$ by calculating to 4 decimal places by

Simpson's $\frac{1}{3^{\text {rd }}}$ rule. $\int_{0}^{5} \frac{\mathrm{dx}}{4 \mathrm{x}+5}$ dividing the range into ten equal parts.
b. Given the values

X	5	7	11	13	17
$\mathrm{f}(\mathrm{x})$	150	392	1452	2366	5202

Evaluate f(9), using
(i) Lagrange's formula
(ii)Newton's divided difference formula
Q. 7 a. Use Charpit's method to solve $p x y+p q+q y=y z$
b. Use method of separation of variables to solve $3 \frac{\partial U}{\partial x}+2 \frac{\partial U}{\partial y}=0$, given that $U(x, 0)=4 e^{-x}$
Q. 8 a. Two persons ' A ' and ' B ' toss an unbiased coin alternately on the understanding that the first who gets the head wins. If ' A ' starts the game, compare their chances of winning.
b. An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck drivers. The probability of accident is $0.01,0.03$ and 0.15 respectively. One of the insured person meets an accident. What is the probability that he is a scooter driver?
Q. 9 a. The diameter of an electric cable is assumed to be a continuous variate with probability density function given by $f(x)=K x(1-x), 0 \leq x \leq 1$. Find the number K . Also find the mean and the variance.
$(2+3+3)$
b. Find the mean and variance of a Binomial Distribution.

