Code: AE51/AC51/AT51

Subject: ENGINEERING MATHEMATICS - I

ROLL NO.

AMIETE – ET/CS/IT

Time: 3 Hours

JUNE 2013

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

	The value of the determinant			1 2	3	4	
a.				3	3	4	:
				2	4	4	18
				1 2	3	5	
	(A) 0 (C) 2				(B) (D)	1 3	
b.	The rank of the matrix	5	6	7	8]	
		6	7	8	9	is	
		11	12	13	14		
		16	17	18	19_		
	(A) 4				(B)	3	
	(C) 2		(D) 1				

c. If the curves f(x, y) = 0 and $\phi(x, y) = 0$ touch each other, then at the point of contact,

(A)	$\frac{\partial f}{\partial x}\frac{\partial \phi}{\partial y} =$	$=\frac{\partial f}{\partial y}\frac{\partial \phi}{\partial x}$	(B) $\frac{\partial f}{\partial x} \frac{\partial f}{\partial y} =$	$=\frac{\partial \phi}{\partial x}\frac{\partial \phi}{\partial y}$
(C)	$\frac{\partial f}{\partial x}\frac{\partial \phi}{\partial x} =$	$=\frac{\partial f}{\partial y}\frac{\partial \phi}{\partial y}$	(D) None of	f these

1

ROLL NO.

Code: AE51/AC51/AT51

Subject: ENGINEERING MATHEMATICS - I

d. The value of the integral $\int_{0}^{1} \int_{0}^{\sqrt{1-y^2}} x^3 y \, dxdy \text{ is}$ $(A) \frac{1}{6} \qquad (B) \frac{1}{8}$ $(C) \frac{1}{12} \qquad (D) \frac{1}{24}$

e. Using Newton-Raphson method, a recurrence formula for finding $\sqrt{N}\,$ is

(A)
$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{N}{x_n} \right)$$

(B) $x_{n+1} = \frac{1}{2} \left(x_n + \frac{1}{Nx_n} \right)$
(C) $x_{n+1} = \frac{1}{2} \left(x_n - \frac{N}{x_n} \right)$
(D) $x_{n+1} = \frac{1}{2} \left(x_n - \frac{1}{Nx_n} \right)$

f. A family of straight lines passing through the origin is represented by

(A)
$$ydx + xdy = 0$$
(B) $ydx - xdy = 0$ (C) $xdx + ydy = 0$ (D) $xdx - ydy = 0$

g. Particular integral of the differential equation $\frac{d^2y}{dx^2} + x^2y = \cos(nx + \alpha)$

(A) $\frac{x}{2n}\cos(nx+\alpha)$ (B) $-2nx\cos(nx+\alpha)$ (C) $\frac{x}{2n}\sin(nx+\alpha)$ (D) $-2nx\sin(nx+\alpha)$

h. $\beta\left(\frac{1}{2}, \frac{3}{2}\right)$ is equal to (A) $\sqrt{\pi}$ (B) π (C) $\frac{\sqrt{\pi}}{2}$ (D) $\frac{\pi}{2}$

i. The value of $J_{\frac{1}{2}}^{2}(x) + J_{\frac{1}{2}}^{2}(x)$ is (A) $\frac{2}{\pi x}$ (B) $\frac{\pi x}{2}$ (C) $\frac{2x}{\pi}$ (D) $\frac{x}{2\pi}$

ROLL NO.

Code: AE51/AC51/AT51 Subj

j.

- -

Subject: ENGINEERING MATHEMATICS - I

If
$$u = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}$$
, then
(A) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} - z \frac{\partial u}{\partial z} = 0$ (B) $x \frac{\partial u}{\partial x} - y \frac{\partial u}{\partial y} - z \frac{\partial u}{\partial z} = 0$
(C) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$ (D) None of these

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. If $x^{x}y^{y}z^{z} = c$, show that at x=y=z, $\frac{\partial^{2}z}{\partial x \partial y} = -(x \log ex)^{-1}$ (8)

b. Expand $f(x, y) = \tan^{-1}(xy)$ in powers of (x-1) and (y-1) upto second degree terms. (8)

Q.3 a. Change the order of integration and then evaluate it $\int_{0}^{\infty} \int_{0}^{x} xe^{\frac{-x^2}{y}} dydx$ (8)

- b. Find the volume of the tetrahedron bounded by the coordinate planes and the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ (8)
- **Q.4** a. Solve the equation $\begin{vmatrix} x+1 & 2x+1 & 3x+1 \\ 2x & 4x+3 & 6x+3 \\ 4x+1 & 6x+4 & 8x+4 \end{vmatrix} = 0$ (8)
 - b. Find the values of λ for which the equations $(2-\lambda)x + 2y + 3 = 0$, $2x + (4-\lambda)y + 7 = 0$, $2x + 5y + (6-\lambda) = 0$ are consistent and find the values of x and y corresponding to each of these values of λ . (8)
- Q.5 a. Use Regula-Falsi method to compute the real root of xe^x = 2 correct to three decimal places.
 (8)
 - b. Use Runge-Kutta method of order four to find y(0.2) for the equation $\frac{dy}{dx} = \frac{y - x}{y + x}, y(0) = 1. \text{ Take } h = 0.2.$ (8)

3

Code: AE51/AC51/AT51

Q.8

Subject: ENGINEERING MATHEMATICS - I

ROLL NO.

Q.6 a. Solve the equation
$$\frac{dy}{dx} = -\left(\frac{x + y\cos x}{1 + \sin x}\right)$$
 (8)

b. Find the orthogonal trajectories of the family of coaxial circles $x^{2} + y^{2} + 2\lambda y + C = 0$, λ being the parameter. (8)

Q.7 a. Solve the differential equation
$$\frac{d^2y}{dx^2} + 4y = x^2 + \cos 2x$$
 (8)

b. Use method of variation of parameters to solve $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \frac{e^{3x}}{x^2}$ (8)

a. Show that
(i)
$$\int_{0}^{\pi/2} \sqrt{\sin \theta} d\theta \int_{0}^{\pi/2} \frac{1}{\sqrt{\sin \theta}} d\theta = \pi$$
(ii) $\beta(m, n+1) + \beta(m+1, n) = \beta(m, n)$
(4+4)

b. Solve in series the equation
$$9x(1-x)\frac{d^2y}{dx^2} - 12\frac{dy}{dx} + 4y = 0$$
 (8)

Q.9 a. Show that
$$J_4(x) = \left(\frac{48}{x^3} - \frac{8}{x}\right) J_1(x) + \left(1 - \frac{24}{x^2}\right) J_0(x)$$
 (8)

b. Show that
$$\int_{-1}^{1} (1 - x^2) P'_m(x) P'_n(x) dx = 0$$
 (8)

4