$\qquad$

## AMIETE - CS

Time: 3 Hours

## JUNE 2013

Max. Marks: 100

## please write your roll no. at the space provided on each page IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. If $\mathrm{A} \times \mathrm{B}=\mathrm{B} \times \mathrm{A}$, (where A and B are general matrices) then
(A) $\mathrm{A}=\varphi$
(B) $\mathrm{A}=\mathrm{B}^{\prime}$
(C) $\mathrm{B}=\mathrm{A}$
(D) $\mathrm{A}^{\prime}=\mathrm{B}$
b. A partial order relation is transitive, reflexive and
(A) antisymmetric
(B) bisymmetric
(C) antireflexive
(D) asymmetric
c. $\mathrm{p} \rightarrow \mathrm{q}$ is logically equivalent to
(A) $\sim q \rightarrow p$
(B) $\sim p \rightarrow q$
(C) $\sim p \wedge q$
(D) $\sim p \vee q$
d. A recursive definition for the sequence $a_{n}=n(n+2)$ for $n \geq 1$ is
(A) $\mathrm{a}_{\mathrm{n}+1}=2 \times \mathrm{a}_{\mathrm{n}}$
(B) $\mathrm{a}_{\mathrm{n}+1}=\mathrm{a}_{\mathrm{n}-1}+2$
(C) $\mathrm{a}_{\mathrm{n}+1}=\mathrm{a}_{\mathrm{n}}+2 \mathrm{n}+3$
(D) $\mathrm{a}_{\mathrm{n}+1}=\mathrm{a}_{\mathrm{n}}+(2 \mathrm{n}+1)$
e. The number of distinct relations on a set of 3 elements is:
(A) 8
(B) 9
(C) 18
(D) 512
f. $(P \rightarrow q) \wedge(P \rightarrow R)$ is
(A) $\mathrm{P} \rightarrow(\mathrm{Q} \vee \mathrm{R})$
(B) $\mathrm{P} \rightarrow(\mathrm{q} \rightarrow \mathrm{R})$
(C) $\mathrm{P} \rightarrow(\mathrm{q} \wedge \mathrm{R})$
(D) $\mathrm{P} \rightarrow(\mathrm{R} \rightarrow \mathrm{q})$
g. Let $\mathrm{N}=\{1,2,3 \ldots\}$ be ordered by divisibility, which of the following subset is totally ordered
(A) $(2,6,24)$
(B) $(3,5,15)$
(C) $(2,9,16)$
(D) $(4,15,30)$
h. Three unbiased coins are tossed. What is the probability of getting at most two heads?
(A) $3 / 4$
(B) $1 / 4$
(C) $3 / 8$
(D) $7 / 8$
i. Context free languages are closed under
(A) union, intersection
(B) intersection, complement
(C) union, kleene star
(D) complement, kleene star
j. If any 6 numbers are chosen from 1 to 10 , then two of them have their sum equal to
(A) 6
(B) 10
(C) 15
(D) 11

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.
Q. 2 a. Prove that $A-(B \cap C)=(A-B) \cup(A-C)$
b. A die is tossed thrice. Find the probability of getting an odd number at least once.
c. A speaks truth in $80 \%$ of the cases and B speaks truth in $60 \%$ of the cases. Find the probability of the cases of which they are likely to contradict each other in stating the same fact.
Q. 3 a. Prove the following logical equivalences without using truth tables:
(i) $\mathrm{P} \vee[\mathrm{P} \wedge(\mathrm{P} \vee \mathrm{Q})] \Leftrightarrow \mathrm{P}$
(ii) $[P \vee Q \vee(\neg P \wedge \neg Q \wedge R)] \Leftrightarrow P \vee Q \vee R$
(iii) $[(\neg P \vee \neg Q) \rightarrow(P \wedge Q \wedge R)] \Leftrightarrow P \wedge Q$
(iv) $[(\mathrm{P} \rightarrow \mathrm{q}) \wedge(\mathrm{r} \rightarrow \mathrm{q})] \Leftrightarrow[(\mathrm{P} \vee \mathrm{r}) \rightarrow \mathrm{q}]$
b. What are tautologies and contradictions? Prove that, for any propositions P, $\mathrm{Q}, \mathrm{R}$ the following compound propositions are tautologies:
(i) $[(\mathrm{P} \rightarrow \mathrm{Q}) \wedge(\mathrm{P} \rightarrow \mathrm{R})] \rightarrow(\mathrm{P} \rightarrow \mathrm{R})$
(ii) $[\mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{R})] \rightarrow[(\mathrm{P} \rightarrow \mathrm{Q}) \rightarrow(\mathrm{P} \rightarrow \mathrm{R})]$
Q. 4 a. Prove that $q \vee s$ is a valid conclusion from the premises $P \rightarrow q, r \rightarrow s, P \vee r$.
b. Test the validity of the following arguement:

If I study, I will not fail in the examination.
If I do not watch TV in the evenings, I will study.
I failed in the examination.
$\therefore$ I must have watched TV in the evenings.
Q. 5 a. Find an explicit definition of the sequence defined recursively by
$\mathrm{a}_{1}=7, \mathrm{a}_{\mathrm{n}}=2 \mathrm{a}_{\mathrm{n}-1}+1$ for $\mathrm{n} \geq 2$
b. Prove by induction
$1.1!+2.2!+\ldots . . .+n . n!=(n+1)!-1$
Q. 6 a. If $R$ is a relation defined by iff $a+d=b+c$, show that $R$ is an equivalence relation.
b. For any relation $R$ in a set $A$, we can define the inverse relation $R^{-1}$ by ${ }^{a} R_{b}{ }^{-1}$ iff ${ }^{\mathrm{a}} \mathrm{R}_{\mathrm{b}}$
Prove that
(i) As a subset of $\mathrm{A} \times \mathrm{A}, \mathrm{R}^{-1}=\{(\mathrm{b}, \mathrm{a}) /(\mathrm{a}, \mathrm{b}) \in \mathrm{R}\}$
(ii) R is symmetric iff $\mathrm{R}=\mathrm{R}^{-1}$
Q. 7 a. Prove that the inverse of a linear function is also linear and the two slopes are reciprocals of each other.
b. A toy manufacturer has a new product to sell. The number of units to be sold, $x$, is a function of the price $p: n(p)=30-25 p$. The revenue earned is a function of the number of units sold: $r(x)=1000-(1 / 4) x^{2}$. Find the function for revenue in terms of price, $p$.
Q. 8 a. Let G be a cyclic group of order 6. How many of its elements generate G?
b. State and prove Lagrange's theorem. Explain any two direct consequences of Langrange's theorem.
Q. 9 a. Let R be a ring with a unity element 1 . Show that the set $\mathrm{R}^{*}$ of units in R is a group under Multiplication.
b. Give steps and an example to generate a parity check matrix.

