ROLL NO.

Code: AC65

Subject: DISCRETE STRUCTURES

AMIETE – CS

Time: 3 Hours

JUNE 2013

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. If $A \times B = B \times A$, (where A and B are general matrices) then

(A) A=φ	$(\mathbf{B}) \mathbf{A} = \mathbf{B}'$
$(\mathbf{C}) \mathbf{B} = \mathbf{A}$	$(\mathbf{D}) \mathbf{A}' = \mathbf{B}$

b. A partial order relation is transitive, reflexive and

(A) antisymmetric	(B) bisymmetric
(C) antireflexive	(D) asymmetric

c. $p \rightarrow q$ is logically equivalent to

$(\mathbf{A}) \sim \mathbf{q} \rightarrow \mathbf{p}$	$(\mathbf{B}) \sim \mathbf{p} \rightarrow \mathbf{q}$
(C) ~ $p \wedge q$	(D) ~ $p \lor q$

d. A recursive definition for the sequence $a_n = n(n+2)$ for $n \ge 1$ is

$(\mathbf{A}) \ \mathbf{a}_{n+1} = 2 \times \mathbf{a}_n$	(B) $a_{n+1} = a_{n-1} + 2$
(C) $a_{n+1} = a_n + 2n + 3$	(D) $a_{n+1} = a_n + (2n+1)$

e. The number of distinct relations on a set of 3 elements is:

(A) 8	(B) 9
(C) 18	(D) 512

f. $(P \rightarrow q) \land (P \rightarrow R)$ is

$(\mathbf{A}) \ \mathbf{P} \rightarrow (\mathbf{Q} \lor \mathbf{R})$	$(\mathbf{B}) \ \mathbf{P} \rightarrow (\mathbf{q} \rightarrow \mathbf{R})$
(C) $P \rightarrow (q \land R)$	$(\mathbf{D}) \ \mathbf{P} \rightarrow (\mathbf{R} \rightarrow \mathbf{q})$

g. Let $N = \{1, 2, 3...\}$ be ordered by divisibility, which of the following subset is totally ordered

(A) (2, 6, 24)	(B) (3, 5, 15)
(C) (2, 9, 16)	(D) (4, 15, 30)

Subject: DISCRETE STRUCTURES

h. Three unbiased coins are tossed. What is the probability of getting at most two heads?

(A) 3/4	(B) 1/4
(C) 3/8	(D) 7/8

i. Context free languages are closed under

(A) union, intersection	(B) intersection, complement
(C) union, kleene star	(D) complement, kleene star

j. If any 6 numbers are chosen from 1 to 10, then two of them have their sum equal to

(A) 6	(B) 10
(C) 15	(D) 11

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- **Q.2** a. Prove that $A (B \cap C) = (A B) \cup (A C)$ (5)
 - b. A die is tossed thrice. Find the probability of getting an odd number at least once. (5)
 - c. A speaks truth in 80% of the cases and B speaks truth in 60% of the cases. Find the probability of the cases of which they are likely to contradict each other in stating the same fact.

Q.3 a. Prove the following logical equivalences without using truth tables:

- (i) $P \lor [P \land (P \lor Q)] \Leftrightarrow P$
- (ii) $[P \lor Q \lor (\neg P \land \neg Q \land R)] \Leftrightarrow P \lor Q \lor R$ (iii) $[(\neg P \lor \neg Q) \rightarrow (P \land Q \land R)] \Leftrightarrow P \land Q$ (iv) $[(P \rightarrow q) \land (r \rightarrow q)] \Leftrightarrow [(P \lor r) \rightarrow q]$ (8)
- b. What are tautologies and contradictions? Prove that, for any propositions P, Q, R the following compound propositions are tautologies:

(i)
$$[(P \to Q) \land (P \to R)] \to (P \to R)$$

(ii)
$$[P \rightarrow (Q \rightarrow R)] \rightarrow [(P \rightarrow Q) \rightarrow (P \rightarrow R)]$$
 (8)

Q.4 a. Prove that $q \lor s$ is a valid conclusion from the premises $P \to q, r \to s, P \lor r$.

(8)

(8)

b. Test the validity of the following arguement: If I study, I will not fail in the examination. If I do not watch TV in the evenings, I will study. I failed in the examination.
∴ I must have watched TV in the evenings.

Code	e: A	AC65 Subject: DISCRETE STRUCTURE	S
Q.5	a.	Find an explicit definition of the sequence defined recursively by $a_1 = 7, a_n = 2a_{n-1} + 1$ for $n \ge 2$ (8)	
	b.	Prove by induction $1.1! + 2.2! + \dots + n.n! = (n+1)! - 1$ (8)	
Q.6	a.	If R is a relation defined by iff $a + d = b + c$, show that R is an equivalence relation. (8)	
	b.	For any relation R in a set A, we can define the inverse relation R^{-1} by ${}^{a}R_{b}^{-1}$ iff ${}^{a}R_{b}^{}$ Prove that (i) As a subset of A x A, $R^{-1} = \{(b, a) / (a, b) \in R\}$ (ii) R is symmetric iff $R = R^{-1}$ (8)	
Q.7	a.	Prove that the inverse of a linear function is also linear and the two slopes are reciprocals of each other. (8)	
	b.	A toy manufacturer has a new product to sell. The number of units to be sold x, is a function of the price p: $n(p)=30-25p$. The revenue earned is a function of the number of units sold: $r(x) = 1000-(1/4)x^2$. Find the function for revenue in terms of price, p. (8)	n e
Q.8	a.	Let G be a cyclic group of order 6. How many of its elements generate G? (8)	
	b.	State and prove Lagrange's theorem. Explain any two direct consequences of	

- 9 a. Let R be a ring with a unity element 1. Show that the set R* of units in R is a
- Q.9 a. Let R be a ring with a unity element 1. Show that the set R* of units in R is a group under Multiplication. (8)
 - b. Give steps and an example to generate a parity check matrix. (8)

Code: AC65

ROLL NO. _

Subject: DISCRETE STRUCTURES