ROLL NO.

Code: AC60 / AT60

Subject: COMPUTER GRAPHICS

AMIETE - CS/IT

Time: 3 Hours

JUNE 2013

Max. Marks: 100

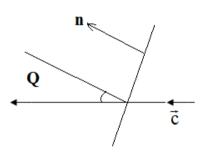
 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:


a. Which one of the following plotters moves pen in two dimension?

(A)	pen plotter	(B)	flatbed plotter
(C)	drum plotter	(D)	None of these

b. The aspect ratio of a screen of size 17"×15" having resolution 1024×1024 is

(A) 1	(B) 17/15
(C) 15/17	(D) 1.1

- c. Given the vectors as below, the value of $n \cdot c$ is
 - (A) >0
 (B) <0
 (C) =0
 (D) None of these

d. The normal to the polygon with vertices P_0 (-6, 2, 5), $P_1(8, 6, 7)$, $P_2(3, 4, 5)$

(A) (-6, -8, 0)	(B) (8, -6, 0)
(C) (0, 8, -6)	(D) (0, -6, 8)

e. Axonometric projection is a type of

(A) Perspective projection
(C) Parallel projection

- (**B**) Cavalier projection
- (**D**) None of these

Code: AC60 / AT60	Subject: COMPUTER GRAPHICS
f. Which is provided by the open C	GL?
(A) Gouraud shading(C) Both (A) & (B)	(B) Phong shading(D) None of these
g. In an RGB image, each colors a each pixel would be	is represented by 8 bits. The number colors for
(A) 2^8 (C) 3×2^{-8}	(B) 2^{24} (D) 8×2^3
(C) 3×2^{-8}	(D) 8×2^{5}
h. The matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ represe	ents reflection along
 (A) the line y = x (B) y - Axis (C) x - Axis (D) None of these 	
i. The stereo view reduces	
(A) camera control(C) sense of depth	(B) picture realism(D) visually ambiguity
j. The homogeneous co-ordinate of	of the point (2, 3) is

(A) (2, 3, 1)	(B) (2, 3, 2)
(C) (3, 2, 1)	(D) (3, 2, 2)

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	What do you mean by frame buffer ? Draw a block diagram showing technique for scanning out an image from frame buffer to display surface.	
	b.	Describe the structure of plasma panel display.	(4)
	c.	Write about any two applications that uses computer graphics.	(4)
Q.3	a.	Write the name of three main open GL libraries.	(3)
	b.	Explain in detail "window to the viewport" mapping.	(8)
	c.	Explain the most general form of the format of open GL command. A explain open GL data types.	Also (5)

Q.4	a.	Explain the Cohen – sutherland polygon clipping algorithm with an example	e. (8)
	b.	Write the pseudocode for the Cyrus Beck algorithm.	(8)
Q.5	a.	Give the composite transformation matrix in homogenous co-ordinate syst to rotate a line about the point (30, 40) through an angle of 45°.	tem (6)
	b.	Explain how can we change the usual co-ordinate system for perform rotation after translation of an object.	ing (6)
	c.	What are the co-ordinate of the point $(3,1,4)$ after it has been rotated by about y – Axis.	30° (4)
Q.6	a.	What do you mean by perspective projection ? Derive an expression finding perspective projection of a point onto a plain surface.	for (6)
	b.	Let $P_i(x_i, y_i, z_i)$ i = 1, N be the vertices of a polygon not perfect	ctly
		planar. Give the components of the normal vector $\stackrel{\rightarrow}{m}$ (m_x, m_y, m_z) to polygon.	the (6)
	c.	What do you mean by vanishing points? Explain.	(4)
Q.7	a.	What is depth buffer algorithm? What are its limitations? How do instruct OpenGL to create a depth buffer?	you (8)
	b.	Explain the Gourand shading method.	(8)
Q.8	a.	What do you mean by aliasing? What are its disadvantages? Describe method to remove aliasing, using post filtering. (1	e a 1 0)
	b.	How can you copy a Pixmap from one place to another? Write two Open functions for performing these copying operation.	GL (6)
Q.9	a.	Explain parametric and geometric continuity of a curve.	(4)
	b.	Using de Casteljau algorithm, write about the technique for drawing a Bez curve passing through the four points P_0, P_1, P_2, P_3 .	zier (8)
	c.		ting (4)