ROLL NO.

Code: DE65

Subject: CONTROL ENGINEERING

DiplETE – ET (Current Scheme)

Time: 3 Hours

JUNE 2015

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

- a. Driving of a car by a man is
 - $(\mathbf{A})~$ an open-loop control system
 - (B) a closed-loop feedback system
 - (C) not a control system
 - (**D**) may be closed-loop or open-loop system, depending on the type of car in use.
- b. In control system engineering the term servo-mechanism is used for system where the output is

(A) position	(B) velocity
(C) acceleration	(D) any of these

c. The general solution of differential equation $\frac{dy}{dx} = \frac{x^2}{y^2}$ is of the form

(A) $x^3 - y^3 = c$	(B) $x^2 + y^2 = c$
$(\mathbf{C}) \mathbf{x}^3 + \mathbf{y}^3 = \mathbf{c}$	$(\mathbf{D}) \mathbf{x}^2 - \mathbf{y}^2 = \mathbf{c}$

d. Which of the following function is not Laplace Transformable

$(\mathbf{A}) \mathbf{e}^{\mathrm{at}}$	(B) e ^{-at}
(C) e^{t^2}	(D) None of these

- e. If a linear time-invariant control system is subjected to a bounded input and the response has some oscillations which neither damp out nor increases with respect to time, then the system is said to be
 - (A) stable(B) unstable(C) relatively stable(D) marginally stable

ROLL NO.

Subject: CONTROL ENGINEERING

f. The signal flow graph representation for a control system is

(A) pictorial representation
(C) both (A) and (B)

(**B**) graphical representation

(D) none of these

g. The steady-state error due to a unit-step input to a type 2 system is

(A)
$$\frac{1}{k_{p}}$$
 (B) $\frac{1}{1+k_{p}}$
(C) ∞ (D) 0

h. The independent parameter is Nyquist plot is/are

(A) Magnitude of G(jw)	(B) phase of $G(jw)$
(C) both (A) and (B)	(D) frequency (w)

i. The initial slope of the Bode plot for a transfer function having double zero at origin is

(A) 20 dB/decade	(B) 40 dB/decade
(C) -20 dB/decade	(D) -40 dB/decade

j. The open-loop transfer function of a closed-loop control system is given as follows $G(s)H(s) = \frac{k(s+1)^2}{(s+2)^2}$ determine the number of branches of its root-loci

(A) 1	(B) 2
(C) 3	(D) 4

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Discuss the important characteristics of feedback in reference to control systems. (8)
 - b. Draw the block diagram for the system represented by the following equation. $x_3 = \frac{d^2 x_2}{dt^2} + \frac{dx_1}{dt} - x_1$ (8)
- Q.3 a. Name the various test functions used in control system analysis. Explain each one clearly bringing out their relative merits and limitations. (8)
 - b. Determine the Inverse Laplace transform of the following function

$$f(s) = \frac{2s+6}{s^2+3s+2}$$
(8)

ROLL NO.

Code: DE65

Subject: CONTROL ENGINEERING

- Q.4 a. With the help of example explain Routh stability criterion used to determine the stability of a control system. (8)
 - b. Determine the location of roots of following equation using continued fraction stability criterion. (8) $Q(s) = s^3 + 6s^2 + 12s + 8 = 0$
- Q.5 a. Give the important characteristics of signal flow graphs in reference to control system representation. (8)
 - b. Obtain C/R ratio for a system whose signal flow graph is represented by the following figure: (8)

- Q.6 a. Define parabolic-error constant for a general control system. Derive the values of parabolic error constants and steady-state error due to parabolic-input for type 0, 1 and 2 systems.
 (8)
 - b. Define and illustrate with the help of examples the following terms in reference to the control system design.
 (i) Gain margin (ii) Phase margin (8)

Q.7 Write notes on any <u>TWO</u> of the following: (2X8) (i) System compensation

- (ii) Polar plots
- (iii) Nyquist stability criterion
- Q.8 Give a step wise procedure for drawing the root- locus in reference to control systems. Illustrates the procedure with the help of an example. (16)
- Q.9 Explain how the Bode plots for a continues time system can be constructed. Illustrate with the help of an example. (16)