ROLL NO. \qquad

DipIETE - ET (Current Scheme)

Time: 3 Hours

JUNE 2015

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. Which one of the following is a passive element?
(A) BJT
(B) Inductor
(C) FET
(D) Op-Amp
b. The Laplace Transform of $e^{-2 t}$ is \qquad
(A) $1 / 2 \mathrm{~S}$
(B) $\mathrm{S}+2$
(C) $1 /(\mathrm{S}+2)$
(D) 2 S
c. Consider the circuit shown in Fig. 1 under maximum power transfer condition current in circuit is I, what is the value of R_{L} to make this current 2I.
(A) $R_{L}=R_{S}$
(B) $\mathrm{R}_{\mathrm{L}}=0$
(C) $\mathrm{R}_{\mathrm{L}}=\frac{\mathrm{R}_{\mathrm{S}}}{2}$
(D) $\mathrm{R}_{\mathrm{L}}=\infty$

d. For a linear passive bilateral network
(A) $\mathrm{h}_{21}=\mathrm{h}_{12}$
(B) $\mathrm{h}_{21}=-\mathrm{h}_{12}$
(C) $\mathrm{h}_{12}=\mathrm{g}_{12}$
(D) $h_{12}=-g_{12}$
e. A parallel RLC network has $\mathrm{R}=4 \mathrm{ohm}, \mathrm{L}=4 \mathrm{H}$ and $\mathrm{C}=0.25 \mathrm{~F}$, then at resonance Q is
(A) 1
(B) 10
(C) 20
(D) 40
f. The characteristic impedance of a distortion less line is:
(A) Real
(B) Inductive
(C) Capacitive
(D) Complex
g. For a transmission line, open circuit and short circuit impedances are 20 ohm and 5 ohm . The characteristic impedance of the line is
(A) 100 ohm
(B) 50 ohm
(C) 10 ohm
(D) 25 ohms
h. For a prototype low pass filter, the phase constant β in the attenuation band is
(A) π
(B) $\pi / 2$
(C) Zero
(D) Infinity
i. For a coil with inductance L and resistance R in series with a capacitor C has
(A) Resonance impedance as zero
(B) Resonance impedance R
(C) Resonance impedance L/CR
(D) Resonance impedance as infinity
j. Double stub matching eliminates standing waves on the
(A) Source side of the left stub
(B) Load side of the right stub
(C) Both sides of the stub
(D) In between the two stubs

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. Differentiate between:
(i) Unilateral and Bilateral elements
(ii) Distributed and lumped elements.
b. A current $\mathrm{I}=10$ t A flows in a condenser C of value $10 \mu \mathrm{~F}$. Calculate the voltage, charge and energy stored in the capacitor at time $t=1 \mathrm{sec}$.
Q. 3 a. Find Laplace transform of the following:
(i) t^{n}
(ii) sinat
b. Explain shifting theorem of Laplace transform.
c. State and prove initial and final value theorems of Laplace transform.
Q. 4 a. Find the power dissipated in 8 ohm resistors in the circuit shown below if Fig. 2 using Thevenin’s theorem.

b. State the superposition theorem. Using this theorem find the voltage across the 16 ohm resistor shown in Fig.3.
Q. 5 a. Find out the Z parameters and hence the ABCD parameters of the network shown in Fig.4. Check if the network is symmetrical or reciprocal.

b. Derive the relationship between Y and ABCD parameter.
(6)
Q. 6 a. Derive the expression of resonant frequency for a parallel R-L-C circuit in terms of Q, R, L and C.
b. For a series resonant circuit, $R=5 \Omega, \mathrm{~L}=1 \mathrm{H}$ and $\mathrm{C}=0.25 \mu \mathrm{f}$. Find the resonance frequency and band width.
Q. 7 a. State the types of distortions in a transmission line. Derive the conditions to eliminate the two types of distortions.
b. A generator of $1 \mathrm{~V}, 1000 \mathrm{~Hz}$ supplies power to 1000 Km long open wire line terminated in its characteristic impedance Z_{0} and having the following parameters. $\mathrm{R}=15 \mathrm{ohm}, \mathrm{L}=0.004 \mathrm{H}, \mathrm{C}=0.008 \mu \mathrm{~F}, \mathrm{G}=0.5 \mu \mathrm{mhos}$. Calculate the characteristic impedance, propagation constant and the phase velocity. (8)
Q. 8 a. Explain single stub impedance matching of lines.
b. Explain the basis for construction of Smith chart. Illustrate as to how it can be used as an admittance chart.
(8)
Q. 9 a. Design a constant K band pass filter section having cut off frequencies of 2 KHz and 5 KHz and a nominal impedance of 600 ohm . Draw the configuration of the filter.
b. Write short notes on:
(i) Low-pass filter and its approximation/design
(ii) Symmetrical Lattice attenuator

