ROLL NO. _

Code:	DE57
-------	-------------

Subject: NETWORKS AND TRANSMISSION LINES

DiplETE – ET (Current Scheme)

Time: 3 Hours

JUNE 2015

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

```
Q.1 Choose the correct or the best alternative in the following: (2 \times 10)
```

a. Which one of the following is a passive element?

(A) BJT	(B) Inductor
(C) FET	(D) Op-Amp
The Laplace Transform of e^{-2t} is	

b. The Laplace Transform of e⁻² is _____

(A)	1/2S	(B)	S+2
(C)	1/(S+2)	(D)	2S

c. Consider the circuit shown in Fig.1 under maximum power transfer condition current in circuit is I, what is the value of R_L to make this current 2I.

(A) $R_L = R_S$	
(B) $R_L = 0$	
$(\mathbf{C}) \ \mathbf{R}_{\mathrm{L}} = \frac{\mathbf{R}_{\mathrm{S}}}{2}$	v _s
(D) $R_L = \infty$	
—	Fig.1

d. For a linear passive bilateral network

(A) $h_{21} = h_{12}$	(B) $h_{21} = -h_{12}$
(C) $h_{12} = g_{12}$	(D) $h_{12} = -g_{12}$

e. A parallel RLC network has R=4 ohm, L = 4H and C=0.25F, then at resonance Q is

(A) 1	(B) 10
(C) 20	(D) 40

f. The characteristic impedance of a distortion less line is:

(A) Real	(B) Inductive

(C) Capacitive (D) Complex

1

ROLL NO.

Code: DE57	Subject: NETW	ORKS AND TRANSMISSION LINES
•	nission line, open circui The characteristic imped	t and short circuit impedances are 20 ohm lance of the line is
(A) 100 ohm (C) 10 ohm	1	(B) 50 ohm(D) 25 ohms
h. For a protot	type low pass filter, the	phase constant β in the attenuation band is
(A) π (C) Zero		 (B) π/2 (D) Infinity
i. For a coil wi	th inductance L and res	istance R in series with a capacitor C has
	ce impedance as zero ce impedance L/CR	(B) Resonance impedance R(D) Resonance impedance as infinity
j. Double stub	matching eliminates sta	nding waves on the
(A) Source s	ide of the left stub	(B) Load side of the right stub

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

(C) Both sides of the stub

O.2 a. Differentiate between: (i) Unilateral and Bilateral elements (ii) Distributed and lumped elements. (8)

b. A current I = 10t A flows in a condenser C of value 10 μ F. Calculate the voltage, charge and energy stored in the capacitor at time t= 1 sec. (8)

(**D**) In between the two stubs

- a. Find Laplace transform of the following: Q.3 (i) tⁿ (ii) sin at (2+2)
 - b. Explain shifting theorem of Laplace transform. (4)
 - State and prove initial and final value theorems of Laplace transform. (8) c.
- a. Find the power dissipated in 8 ohm resistors in the circuit shown below if **O.4** Fig.2 using Thevenin's theorem. (8)

DE57 / JUNE - 2015

Code: DE57

Subject: NETWORKS AND TRANSMISSION LINES

- State the superposition theorem. Using this theorem find the voltage across the b. 16 ohm resistor shown in Fig.3. (8)
- 0.5 a. Find out the Z parameters and hence the ABCD parameters of the network shown in Fig.4. Check if the network is symmetrical or reciprocal. (10)

b. Derive the relationship between Y and ABCD parameter.

(6)

- a. Derive the expression of resonant frequency for a parallel R-L-C circuit in 0.6 terms of Q, R, L and C. (8)
 - b. For a series resonant circuit, $R = 5\Omega$, L=1H and C=0.25µf. Find the resonance frequency and band width. (8)
- 0.7 a. State the types of distortions in a transmission line. Derive the conditions to eliminate the two types of distortions. (8)
 - b. A generator of 1V, 1000Hz supplies power to 1000 Km long open wire line terminated in its characteristic impedance Z₀ and having the following parameters. R = 15 ohm, L=0.004H, C = 0.008µF, G = 0.5µmhos. Calculate the characteristic impedance, propagation constant and the phase velocity. (8)
- **Q.8** a. Explain single stub impedance matching of lines. (8)
 - b. Explain the basis for construction of Smith chart. Illustrate as to how it can be used as an admittance chart. (8)
- 0.9 a. Design a constant K band pass filter section having cut off frequencies of 2 KHz and 5 KHz and a nominal impedance of 600 ohm. Draw the configuration of the filter. (8)
 - b. Write short notes on: (i) Low-pass filter and its approximation/design (4+4)
 - (ii) Symmetrical Lattice attenuator