ROLL NO. \_

Code: DE52/DC52 DE102/DC102

## Sub: FUNDAMENTALS OF ELECTRICAL & ELECT. ENGG.

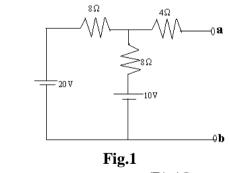
## **DiplETE – ET/CS (Current & New Scheme)**

Time: 3 Hours

# **JUNE 2015**

Max. Marks: 100

 $(2 \times 10)$ 


PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

#### NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions, selecting at least TWO questions from each part. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

#### Q.1 Choose the correct or the best alternative in the following:

- a. Which of the following relation is incorrect
  - (A)  $MMF = Flux \times Reluctance$
  - **(B)** MMF = Number of turns in coil  $\times$  current in coil
  - (C) Flux  $\times$  Density = Permeability  $\times$  Magnetic field strength
  - **(D)** MMF = Permeability  $\times$  Magnetic field strength
- b. The direction of force acting on current carrying conductor in magnetic field is determine by
  - (A) Fleming's left hand rule
- (B) Fleming's right hand rule
- (C) Lenz's law
- **(D)** Faraday's law
- c. What is R<sub>th</sub> in network shown in Fig.1



d. RMS value of half rectified sinusoidal emf is

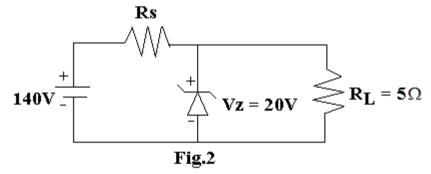
| ( <b>A</b> ) Em                    | <b>(B)</b> Em/2            |
|------------------------------------|----------------------------|
| (C) $\text{Em}/\sqrt{2}$           | ( <b>D</b> ) None of these |
| e. The Yoke of dc motor is made by |                            |

(A) Cast Iron(B) CRGO steel(C) Copper(D) Aluminium

ROLL NO. \_\_\_\_\_ Sub: FUNDAMENTALS OF

ELECTRICAL & ELECT. ENGG.

| <ul><li>j. In Phase shift oscillator</li><li>(A) One</li></ul>      | feedback network contains R-C branches (B) Two                 |
|---------------------------------------------------------------------|----------------------------------------------------------------|
| (A) 0.99<br>(C) 99                                                  | <ul><li>(B) 100</li><li>(D) 101</li></ul>                      |
| i. In a transistor large curr                                       | rent gain $\alpha = 0.99$ so small current gain ( $\beta$ ) is |
| (A) 2 Vm<br>(C) Vm                                                  | <ul> <li>(B) Vm/2</li> <li>(D) 4 Vm</li> </ul>                 |
| h. Peak inverse voltage act                                         | ross diode in Half wave rectifier is                           |
| <ul><li>(A) Electrons</li><li>(C) Both electrons &amp; he</li></ul> | (B) Holes<br>oles (D) None of these                            |
| g. Which of the following                                           | is majority charge carrier in N –type semiconductors           |
| (A) $s = 0$<br>(C) $0 < s < 1$                                      | <ul> <li>(B) s = 1</li> <li>(D) None of these</li> </ul>       |
| f. Slip of 3 phase Induction                                        | n motor at starting is                                         |


| Q.2 | a. | Compare electric and magnetic circuits. (8)                                                                                                                                                                                                                                                                                                                                                       |
|-----|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | b. | A magnetic circular ring of diameter 0.2 meter has cross-sectional area of 0.1<br>meter <sup>2</sup> & relative permeability 1000. An excitation coil of 500 turns is wound<br>over this ring. (8)<br>(i) Calculate reluctance of ring<br>(ii) MMF to established flux density of 1 T in this ring<br>(iii) Current in ring to established flux density of part(ii)<br>(iv) Magnetic flux in ring |
| Q.3 | a. | State & explain superposition theorem with suitable example.(8)                                                                                                                                                                                                                                                                                                                                   |
|     | b. | Three impedances having per phase impedance Zp = (3+j4) ohm are connected<br>in star. This three phase load is connected across 400 volt supply, calculate:(8)<br>(i) Phase voltage<br>(ii) Phase current<br>(iii) Line current<br>(iv) Power consumed by load                                                                                                                                    |
| Q.4 | a. | Derive torque equation of DC motor. (8)                                                                                                                                                                                                                                                                                                                                                           |
|     | b. | A Pole DC shunt motor has armature winding resistance $Ra = 0.3$ ohm and<br>shunt field resistance( $R_{sh} = 100\Omega$ ) When motor connected with 400 volt<br>supply, draws 40 Amp current and running at 1000 RPM. Calculate resistance<br>must be inserted in armature circuit to reduce speed up to 800 RPM. Assume<br>torque is constant. (8)                                              |

## Sub: FUNDAMENTALS OF ELECTRICAL & ELECT. ENGG.

- Q.5 a. Discuss rotating magnetic field and principle of operation of three phase induction motor.(8)
  - b. Magnetic core of  $1 \phi$  transformer is made by CRGO silicon steel ( $\mu_r = 4000$ ). Its mean length is 0.8 meter & area of cross- section is 0.2 meter<sup>2</sup>. (8)
    - (i) Calculate Reluctance of core.
    - (ii) What is current in primary winding (which has 500 turns) to set flux density of 2 Tesla in the core
    - (iii) Calculate emf induced in primary winding. Assume supply frequency 50Hz.
    - (iv) Calculate number of turns & emf induced in secondary winding if transformation ratio is 2.

#### PART B Answer at least TWO questions. Each question carries 16 marks.

- Q.6 a. Compare N-Type & P-Type Extrinsic semiconductors. (8)
  - b. Draw V-I characteristic of P-N Junction diode and explain working of diode in forward and reverse bias. (8)
- Q.7 a. With the help of schematic, explain working of full wave (bridge) rectifier and draw wave forms also.(8)
  - b. Calculate series resistance Rs in Voltage regulator circuit shown in Fig.2. Here zener diode current is 2A.
     (8)



**Q.8** a. Explain input & output V-I characteristics of transistor in CE configuration.

(8)

- b. With the help of circuit diagram, explain working of voltage divider bias and comments on thermal stability of this circuit. (8)
- Q.9 Draw circuit diagram & explain working of the following: (16) (i) Two stage CE amplifier (ii) Phase shift oscillator