ROLL NO. ____

Code: DE105/DC105

Subject: ENGINEERING MATHEMATICS II

Diplete - et/cs {NEW SCHEME}

Time: 3 Hours

JUNE 2015

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. The value of the $\frac{\lim}{x \to 0} \left(\frac{1}{x^2} - \frac{1}{\sin^2 x} \right)$ is equal to (A) 0 (B) 1 (C) $\frac{-1}{3}$ (D) None of these b. The value of $\int_{0}^{\frac{\pi}{2}} \cos^3 x \sin^4 x \, dx$ is equal to (A) $\frac{2}{35}$ (B) $\frac{3}{7}$ (C) $\frac{4}{7}$ (D) None of these

c. The solution of the equation $z^4 + 1 = 0$ is

(A)
$$\frac{\pm 1 + i}{\sqrt{2}}$$
 (B) 1
(C) -1 (D) None of these

DE105/DC105/JUNE 2015

1

- d. If the vector 2i 4j + 5k, i mj + k and 3i + 2j 5k are coplanar, then the value of m will be
- (A) $\frac{1}{2}$ (B) $\frac{26}{25}$ (C) $\frac{-1}{2}$ (D) None of these e. The value of $\vec{A} \times (\vec{B} + \vec{C}) + \vec{B} \times (\vec{C} + \vec{A}) + \vec{C} \times (\vec{A} + \vec{B})$ is
 - $\frac{1}{2} = \frac{1}{2} = \frac{1}$
 - (A) 0 (B) \vec{A} (C) \vec{B} (D) \vec{C}

f. The solution of $\frac{d^2 y}{dx^2} - 8\frac{dy}{dx} + 16y = 0$ is

(A) 0	(B) $y = (c_1 + c_2)e^{4x}$
(C) -1	(D) None of these

g. The series 6-10+4+6-10+4-6+4...... is

(A) Convergent	(B) Divergent
(C) Oscillatory Series	(D) None of these

h. A sequence which is monotonic and bounded is

(A) Convergent	(B) Divergent
(C) Oscillatory Series	(D) None of these

i. The Laplace Transform of $t^3 e^{-3t}$ is

(A) 1	(B) $\frac{s}{(s+3)^3}$
(C) $\frac{6}{(s+3)^4}$	(D) None of these
The Lease I called Tag	

- j. The Inverse Laplace Transform of $\frac{1}{s^n}$ exist only when the value of n is
 - (A) Positive Integer(C) Zero

(B) Negative Integer

(**D**) None of these

ROLL NO. _____

Code: DE105/DC105

Subject: ENGINEERING MATHEMATICS II

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.				
Q.2	a.	By Using Taylor's series, calculate the value of $f\left(\frac{11}{10}\right)$,	Where	
		$f(x) = x^3 + 8x^2 + 15x - 24$	(8)	
		Evaluate $\frac{lt}{x \to 0} \left(\frac{1}{x} - \cot x \right)$	(8)	
Q.3	a.	Evaluate by using the reduction formula $\int_{0}^{\frac{\pi}{2}} \sin^{3}\theta \cos^{4}\theta \cos 2\theta d\theta$	(8)	
	b.	Find the common area lie between the parabolas $x^2 = ay$ and $y^2 = bx$	(8)	
Q.4	a.	State and prove De'Moviere's theorem.	(8)	
	b.	Separate the real and imaginary part of $tan(x+iy)$	(8)	
Q.5	a.	Show that the vectors $\vec{A}, \vec{B}, \vec{C}$, if	(8)	
		$\vec{A} = 5\vec{i} + 6\vec{j} + 7\vec{k}$, $\vec{B} = 7\vec{i} - 8\vec{j} + 9\vec{k}$, $\vec{C} = 3\vec{i} + 20\vec{j} + 5\vec{k}$ are coplanar		
	b.	Prove that $\vec{i} \times (\vec{p} \times \vec{i}) + \vec{j} \times (\vec{p} \times \vec{j}) + \vec{k} \times (\vec{p} \times \vec{k}) = 2\vec{p}$ where		
	0.	$\vec{p} = p_1 \vec{i} + p_2 \vec{j} + p_3 \vec{k}$	(8)	
			(0)	
Q.6	a.	Solve $\frac{d^2 y}{dx^2} + 6\frac{dy}{dx} + 9 = \frac{e^{-3x}}{x^3}$	(8)	
	b.	An inductance of 2 henries and a resistance of 20 ohms are connected in with e.m.f E Volts. If the current is zero when $t = 0$, find the current at to of 0.01 sec, if $E = 100$ volts.		
Q.7		Examine the following series:	(16)	
		(i) $\sum \sqrt{(n^4+1)} - \sqrt{(n^4-1)}$		
		(ii) $\sum \frac{(n+1)^n}{n^{n+1}} x^2$		
Q.8		Find the Laplace Transform of $f(t)$, where	(16)	
		(i) $f(t) = \begin{cases} \frac{t}{a}, & \text{where} 0 < t < a \\ 1, & \text{where} a < t > \infty \end{cases}$		
		(ii) $f(t) = \frac{e^{-t} \sin t}{t}$		
Q.9	a.	Find the Inverse Laplace Transform of $\frac{2s^2 - 6s + 5}{s^3 - 6s^2 + 11s - 6}$.	(8)	
	b.	Apply convolution theorem, find $L^{-1}\left\{\frac{s^2}{(s^2+a^2)^2}\right\}$	(8)	

DE105/DC105/JUNE 2015