DipIETE - ET/CS \{NEW SCHEME\}

Time: 3 Hours
Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. The value of the $\frac{\lim }{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{1}{\sin ^{2} x}\right)$ is equal to
(A) 0
(B) 1
(C) $\frac{-1}{3}$
(D) None of these
b. The value of $\int_{0}^{\frac{\pi}{2}} \cos ^{3} x \sin ^{4} x d x$ is equal to
(A) $\frac{2}{35}$
(B) $\frac{3}{7}$
(C) $\frac{4}{7}$
(D) None of these
c. The solution of the equation $z^{4}+1=0$ is
(A) $\frac{ \pm 1+i}{\sqrt{2}}$
(B) 1
(C) -1
(D) None of these
d. If the vector $2 i-4 j+5 k, i-m j+k$ and $3 i+2 j-5 k$ are coplanar, then the value of m will be
(A) $\frac{1}{2}$
(B) $\frac{26}{25}$
(C) $\frac{-1}{2}$
(D) None of these
e. The value of $\vec{A} \times(\vec{B}+\vec{C})+\vec{B} \times(\vec{C}+\vec{A})+\vec{C} \times(\vec{A}+\vec{B})$ is
(A) 0
(B) \vec{A}
(C) \vec{B}
(D) \vec{C}
f. The solution of $\frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+16 y=0$ is
(A) 0
(B) $y=\left(c_{1}+c_{2}\right) e^{4 x}$
(C) -1
(D) None of these
g. The series $6-10+4+6-10+4-6+4$. \qquad ∞ is
(A) Convergent
(B) Divergent
(C) Oscillatory Series
(D) None of these
h. A sequence which is monotonic and bounded is
(A) Convergent
(B) Divergent
(C) Oscillatory Series
(D) None of these
i. The Laplace Transform of $t^{3} e^{-3 t}$ is
(A) 1
(B) $\frac{s}{(s+3)^{3}}$
(C) $\frac{6}{(s+3)^{4}}$
(D) None of these
j. The Inverse Laplace Transform of $\frac{1}{s^{n}}$ exist only when the value of n is
(A) Positive Integer
(B) Negative Integer
(C) Zero
(D) None of these

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.

Q. 2 a. By Using Taylor's series, calculate the value of $f\left(\frac{11}{10}\right)$, Where $f(x)=x^{3}+8 x^{2}+15 x-24$
b. Evaluate $\frac{l t}{x \rightarrow 0}\left(\frac{1}{x}-\cot x\right)$
Q. 3 a. Evaluate by using the reduction formula $\int_{0}^{\frac{\pi}{2}} \sin ^{3} \theta \cos ^{4} \theta \cos 2 \theta \mathrm{~d} \theta$
b. Find the common area lie between the parabolas $x^{2}=a y$ and $y^{2}=b x$
Q. 4 a. State and prove De'Moviere's theorem.
(8)
b. Separate the real and imaginary part of $\tan (x+i y)$
Q. 5 a. Show that the vectors $\vec{A}, \vec{B}, \vec{C}$, if $\vec{A}=5 \vec{i}+6 \vec{j}+7 \vec{k}, \vec{B}=7 \vec{i}-8 \vec{j}+9 \vec{k}, \vec{C}=3 \vec{i}+20 \vec{j}+5 \vec{k}$ are coplanar
b. Prove that $\vec{i} \times(\vec{p} \times \vec{i})+\vec{j} \times(\vec{p} \times \vec{j})+\vec{k} \times(\vec{p} \times \vec{k})=2 \vec{p}$ where

$$
\begin{equation*}
\vec{p}=p_{1} \vec{i}+p_{2} \vec{j}+p_{3} \vec{k} \tag{8}
\end{equation*}
$$

Q. 6 a. Solve $\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+9=\frac{e^{-3 x}}{x^{3}}$
b. An inductance of 2 henries and a resistance of 20 ohms are connected in series with e.m.f E Volts. If the current is zero when $t=0$, find the current at the end of 0.01 sec , if $E=100$ volts.
Q. 7 Examine the following series:
(i) $\sum \sqrt{\left(n^{4}+1\right)}-\sqrt{\left(n^{4}-1\right)}$
(ii) $\sum \frac{(n+1)^{n}}{n^{n+1}} x^{2}$
Q. 8 Find the Laplace Transform of $f(t)$, where
(i) $f(t)=\left\{\begin{array}{ll}\frac{t}{a}, \text { where } & 0<t<a \\ 1, \text { where } & a<t>\infty\end{array}\right\}$
(ii) $f(t)=\frac{e^{-t} \sin t}{t}$
Q. 9 a. Find the Inverse Laplace Transform of $\frac{2 s^{2}-6 s+5}{s^{3}-6 s^{2}+11 s-6}$.
b. Apply convolution theorem, find $L^{-1}\left\{\frac{s^{2}}{\left(s^{2}+a^{2}\right)^{2}}\right\}$

