ROLL NO.

Code: CT11

Subject: DATA STRUCTURE THROUGH C

ALCCS

Time: 3 Hours

JUNE 2015

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE:

- Question 1 is compulsory and carries 28 marks. Answer any FOUR questions from the rest. Marks are indicated against each question.
- Parts of a question should be answered at the same place.

Q.1 a. What is a pointer? Explain how it is declared and initialized.

- b. What is dynamic memory allocation? Write and explain the different dynamic memory allocation functions in C.
- c. State the difference between arrays and linked lists.
- d. It is generally said that searching a node in a binary search tree is more efficient than that of a simple binary tree. Why?
- e. What is the need for Priority queue?
- f. What is a spanning Tree? Does the minimum spanning tree of a graph give the shortest distance between any two specified nodes?
- g. What do you mean by balanced trees? (7×4)
- Q.2 a. Traverse the given tree using Inorder, Preorder and Postorder traversals. (6)

- b. Write a C Program to add a new node to the ascending order singly linked list. (8)
- c. What is the difference between storing data on the heap vs. on the stack? (4)

Code:	C	T11 Subject: DATA STRUCTURE THROU	GH C
Q.3	a.	Sort the given values using Quick Sort. 65 70 75 80 85 60 55 50 45	(5)
	b.	Write a program to find the minimum cost of a spanning tree.	(8)
	c.	Write a brief note on External variables.	(5)
Q.4	a.	Explain how to check the validity of an expression containing nested parentheses?	(5)
	b.	Explain the following with an example: i) forest ii) graph iii) winner tree	(9)
	c.	Explain and derive the complexity of insertion sort.	(4)
Q.5	a.	Suppose that a linked list is provided that is either circular or not circular. Write function that takes as an input a pointer to the head of a linked list and determine whether the list is circular or if the list has an ending node. If the linked list i circular then the function should return true, otherwise should return false if the linked list is not circular.	a s s (8)
	b.	Given a singly linked list, delete all occurrences of a given key in it. For example consider the following list.	`?
		Input: $2 \to 2 \to 1 \to 8 \to 2 \to 3 \to 2 \to 7$ Key to delete = 2	
		Output: $1 \to 8 \to 3 \to 7$ (10)

- Q.6 a. Define AVL Tree. Explain various rotations of AVL Trees maintaining balance factor while insertion and deletion takes place. (10)
 - b. Write a brief note on m-way search tree. (4)
 - c. Construct a binary tree from the traversal order given below: (4)

(6*3=18)

- **Q.7** Write short notes on
 - (i) Stable marriage problem
 - (ii) The Max-Flow Min-Cut Theorem
 - (iii) Boundary Tag method