ROLL NO.

Code: AE75 Subject: OPTOELECTRONICS AND COMMUNICATION

AMIETE – ET (Current Scheme)

Time: 3 Hours

JUNE 2015

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given may be suitably assumed and stated

hoose the correct or the best	alternative in the following:	(2×10)	
Which one of the following is not a reason for losses in optical fibers		·	
(A) Impurities(C) Attenuation	(B) Microbending(D) Stepped index operation		
If the core/cladding dimension fiber type would be	ns of an optical fiber are given by 50/125µm	ı, the	
(A) Single mode step index(C) Multimode step index	(B) Single mode graded index(D) Multimode graded index		
Which of the following factor	photodetector has the highest multip	olication	
(A) P-N diode(C) PIN diode	(B) Avalanche photodiode(D) Photo transistor		
Splice is a			
 (A) Non permanent connection (B) Non separable junction of (C) A process of cutting fiber (D) A process of breaking fiber 	on of two fibers E two fibers s at the ends er into two		
e. Silica based optical fibers have an attenuation minimum near			
(A) 800 nm (C) 1310 nm	(B) 1020 nm (D) 1550 nm		
The desirable property/proper should be	ties of optical source for fiber optic commu	nication	
(A) High radiance(C) High efficiency	(B) Fast response(D) All of these		
	 hoose the correct or the best Which one of the following is (A) Impurities (C) Attenuation If the core/cladding dimension fiber type would be	hoose the correct or the best alternative in the following: Which one of the following is not a reason for losses in optical fibers	

ROLL NO.

Code: AE75 Subject: OPTOELECTRONICS AND COMMUNICATION

g. An optical amplifier has a noise figure of 3.2dB. If Input signal has a SNR of 50dB, then the output SNR will be _____.

(A) 46.8dB	(B) 56.8 dB
(C) 66.8dB	(D) 76.8dB
(C) 00.8dB	(b) 70.00 b

h. Transmission bit rate of basic SONET signal is STS1 = _____.

(A) 51.84 Mb/s	(B) 501.84Mb/s
(C) not specified	(D) 51.84 Hz

i. SCM stands for _____ .

(A) Systematic code multiplexing	(B) Sub carrier multiplexing
(C) Standard code multiplexing	(D) Sub code multiplexing

- j. A rise time budget analysis is a convenient method for_____.
 - (A) Determining the attenuation limitation of optical fiber link
 - (B) Determining the total budget of an optical fiber link
 - (C) Determining the dispersion limitation of optical fiber link
 - (**D**) Finding the length of fiber optic cable

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Discuss the significance of any FOUR of the following terms in optical fibers:-

- (i) Snell's law
- (ii) Acceptance angle
- (iii) Numerical Aperture
- (iv) Mode theory
- (v) Skew rays
- b. A typical relative refractive index difference for an optical fiber designed for long distance transmission is 1% and its core index is 1.46, then
 (i) Estimate its Numerical Aperture
 (ii) Calculate the Critical Angle at the core-cladding interface within the fiber.

(8)

(8)

- Q.3 a. What is dispersion? How does it play an important role in determining information capacity of a waveguide? Classify the different types of dispersions. (8)
 - b. Discuss the design-optimization characteristics of single-mode fibers with suitable diagrams. (8)

ROLL NO.

Code: AE75 Subject: OPTOELECTRONICS AND COMMUNICATION

Q.4	a.	A double hetrojunction lnGaAsp LED emitting at peak wavelength of 13 has radiative and nonradiative recombination times of 30ns and respectively. The drive current is 40 mA. Find (i) the bulk recombin lifetime and (ii) internal quantum efficiency.	10nm 100ns nation (8)
	b.	Discuss the basic architecture of a vertical-cavity surface emitting single laser with the help of a suitable diagram.	mode (8)
Q.5	a.	A GaAs optical source with a refractive index of 3.6 is coupled to a silicat that has a refractive index of 1.48. If the fiber end and the source are in physical contact. Then find (i) the Fresnel reflection at the interface, and (in power loss)	i fiber close ii) the (8)
	b.	With the help of diagrams, explain the various lensing schemes for couimprovement.	ıpling (8)
Q.6	a.	 Explain any <u>TWO</u> the following terms with reference to optical receivers: (i) Intersymbole interference (ii) Bit error rate (iii) Quantum Limit (iv) Extinction Ratio 	(8)
	b.	Draw and explain the circuit of High Impedance pre-amplifier using FET.	(8)
Q.7	a.	Explain the basic concept of Sub Carrier Multiplexing with a neat diagram.	
	b.	What is RIN? What are the reflection effects on RIN?	(8) (8)
Q.8	a.	What are the key system requirements needed for analyzing a transmission in optical fiber technology?	n link (8)
	b.	What is Rise Time Budget? How is it useful in determining dispersion limit of an optical fiber link?	tation (8)
Q.9	a.	Explain Semiconductor optical Amplifier with a neat diagram and comp with EDFA.	oare it (8)
	b.	Consider an lnGaAsP SOA with $w = 5\mu m$ and $d = 0.5\mu m$. Given $v_g = 2 \times 10^8 \text{ m/s}$, if a 1.0 μ W optical signal at 1550nm enters the device. (i) What is the photon density? (ii) What is the steady state gain per unit length?	that that Then; (8)