ROLL NO.

Subject: VLSI DESIGN

Code: AE74

Time: 3 Hours

AMIETE – ET (Current Scheme)

JUNE 2015

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10)

a. The deficiency of MOS technology is

(A) Low Density	(B) Load Driving Capabilities
(C) Fan-Out Limitations	(D) Both (B) & (C)

b. The poly silicon layer consists of

(A) Heavily Doped Silicon(C) Both (A) & (B)

(**B**) Heavily Doped Poly Silicon (**D**) None of these

c. The gate/channel capacitance is

(A) C_0WL	(B) C ₀ /WL
(C) WL	$(\mathbf{D}) \mathbf{C}_{g} \mathbf{C}_{0}$

d. Figure of merit ω_0 is directly proportional to

(A) Width of channel	(B) Length of channel
(C) Mobility of electron/hole	(D) Electron Transit term

e. An inverter driven directly from the output of another should have a Zp.u/Zp.d ratio of

$(A) \ge 4/1$	(B) ≤ 8/1
(C) ≤ 4/1	$(\mathbf{D}) \ge 8/1$

f. In Lambda based rules, λ is related to

(A) Interconnect Length	(B) Oxide Layer
(C) Poly Layer	(D) Resolution of the process

g. Deposition of metal or metal/silicon alloy is done in

(A) Sputtering	(B) Evaporation
(C) Co-sputtering & Co-evaporation	(D) All of these

h. In order to achieve symmetrical operation using minimum channel length, we would need to make

(A) $Wp = 2.5 Wn$	(B) Wp=Wn
(C) Both (A) & (B)	(D) None of these

i. The gate area of the device is

(A) $A_g = C_{ox} L W$	$(\mathbf{B}) \mathbf{A}_{g} = \mathbf{L} \mathbf{W}$
(C) $A_g = LW/C_{ox}$	$(\mathbf{D}) \mathbf{A}_{g} = \mathbf{C}_{o} \mathbf{L}$

j. Optimization of Time can be achieved in ______ design style.

(A) Full	custom
(C) ASI	С

(B) Semi custom(D) Gate array

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	Write down the different levels of integration of IC industry.	(4)
	b.	With neat sketch explain briefly PMOS & NMOS enhancement mode tra	nsistor. (8)
	c.	Enlist the masks sequence in CMOS p-well process.	(4)
Q.3	a.	Define Stick Diagram. Explain the NMOS encodings in it.	(8)
	b.	Implement schematic, stick diagram and corresponding layout of depletion load inverter.	nMOS (8)
Q.4	a.	Draw and explain nMOS depletion mode transistor pull-up and t characteristics.	transfer (8)
	b.	Explain the functionality of BiCMOS Drivers.	(8)
Q.5	a.	Explain the procedure to calculate sheet resistance of MOS transistors.	(8)
	b.	Define sheet resistance and standard unit of capacitance $\Box C_g$. Find the state dynamic resistance of a minimum sized CMOS inverter.	tic and (8)

Subject: VLSI DESIGN

Q.6	a.	Explain the Limits of miniaturization and Limits of interconnect and resistance.	contact (8)
	b.	Draw and explain typical VLSI design flow in three domains (Y –Chart).	(8)
Q.7	a.	Enlist the CMOS subsystem design process steps.	(8)
	b.	Draw and explain 4-bit ALU functions implementation with an adder.	(8)
Q.8	a.	Write the circuit of CMOS pseudo static memory cell and explain working of it.	briefly (8)
	b.	Explain the optimization of nMOS inverter.	(8)
Q.9	a.	Explain different aspects of CAD Design Tools.	(8)
	b.	Explain the advantages & disadvantages of implementing BIST include.	(8)