ROLL NO. _

Code: AE67

Subject: DIGITAL COMMUNICATIONS

AMIETE – ET (Current Scheme)

Time: 3 Hours

JUNE 2015

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. The minimum sampling rate for the signal, $x(t) = 10 \cos(100 \pi t) \cdot \cos(250 \pi t)$ is

(A) 350 samples/sec	(B) 250 samples/sec
(C) 100 samples/sec	(D) 500 samples/sec

b. The average code word length of a discrete memoryless source is 1.8 bits/ source-symbol and entropy is 1.5 bits/symbol. The efficiency of the source encoder is_____

(A) 12%	(B) 83%
(C) 18%	(D) 15%

c. The sample and hold circuit, in its ideal form, produces an output waveform that represents a ______ interpolation of original analog signal.

(A) flat	(B) ramp	
(C) staircase	(D) unit step	

d. The minimum transmission bandwidth of the T1 carrier system is_____

(A) 1544 kHz	(B) 772 kHz
(C) 2048 kHz	(D) 1234 kHz

- e. The major function of a PN sequence for use in spread spectrum system is to
 - (A) Remove the noise
 (B) Spread the bandwidth of message signal
 (C) To convert analog to digital signal
 - **(D)** To allow frequency hopping
- f. The auto correlation of AWGN is _____
 - (A) Gaussain(B) Impulsive(C) Sinc Function(D) None of these

Subject: DIGITAL COMMUNICATIONS

ROLL NO.

g. The only one signal waveform that produces zero inter symbol interference (ISI) is _____

(A) $\sin (2 \pi B_0 t)$	(B) $\cos(2\pi B_0 t)$
(C) sinc $(2 B_0 t)$	(D) sin $(B_0 t)$

h. A data transceiver to modulate & demodulate a signal is commonly referred to as _____

(A) Repeater	(B) Generator
(C) Automodulator	(D) Modem

i. The asymptotic value of Eb/N0 required to achieve the data rate equal to the channel capacity when the channel bandwidth tends to infinity is equal to _____

(A) -1.6 dB	(B) -3dB
$(\mathbf{C}) \ 0 \ \mathrm{dB}$	(D) infinite

j. The PDF of envelope of narrow band noise is :

(A) Uniform	(B) Gaussain
(C) Very large	(D) Coherent detector

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Explain the Huffman encoding algorithm. Using this algorithm compute the Huffman code for a discrete memoryless source. The source has an alphabet of five symbols with their probabilities given below:

Symbol	S ₁	s ₂	s ₃	s ₄	s 5
Probability	0.55	0.15	0.15	0.1	0.05
Find the coding efficiency.					(10)

- b. Define channel capacity. Derive an expression for the channel capacity of a binary symmetric channel. (6)
- Q.3 a. Compare natural sampling, instantaneous sampling and flat-top sampling techniques. (8)
 - b. Write short note on :(i) Pulse Amplitude Modulation(ii) TDM
- Q.4 a. Represent 0110100010 in NRZ unipolar format, Non return to zero polar format, Non return to zero bipolar format & Manchester. What is the advantage of Manchester coding over other types? (8)
 - b. What is Eye Pattern? Explain the eye pattern with the help of distorted binary wave. (8)

(8)

Code: AE67

Q.5	a.	(i) The BPSK modulation is used in a channel that adds white noise with single-sided PSD $N_0 = 10^{-10}$ W/Hz. Calculate the amplitude A of the carrier signal to give $P_e = 10^{-6}$ for a data rate of 100 Kbps. (4)
		(ii) Find E_b/N_0 in dB to provide $P_{e} = 10^{-6}$ for BPSK and coherent FSK. (4)
	b.	What is a CPFSK modulation scheme? How it is related with the MSK modulation scheme? Explain MSK transmission and reception.(8)
Q.6	a.	Explain the quantization error and derive an expression for maximum signal to noise ratio in PCM system that uses linear quantization. (8)
	b.	Discuss the methods of implementing adaptive equalizers. (8)
Q.7	a.	What is frequency hop spread spectrum? Differentiate and illustrate the slowfrequency hopping & fast frequency hopping.(8)
	b.	Determine the processing gain & jamming margin in a DSSS system, given $T_b = 4.095$ m-sec, $T_c = 1$ µ sec. Assume a maximum of $P_e \le 10^{-5}$. Also find number of feedback stages required. (8)
Q.8	a.	What is a matched filter? Derive the condition for maximum output of a matched filter. (10)
	b.	Write short note on detection of signals with unknown phase in noise. (6)
Q.9		Write short note on: (i) Light wave transmission link (ii) Digital Radio (8+8)

3