\qquad
Code: AE63 Subject: ELECTROMAGNETICS \& RADIATION SYSTEMS

AMIETE - ET (Current Scheme)

Time: 3 Hours
JUNE 2015 - SPECIAL
Max. Marks: 100

please write your roll no. at the space provided on each page IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. Displacement current density J_{D} \qquad current passing through a capacitor
(A) Represents
(B) Does not represent
(C) Is same as
(D) None of these
b. Plane $\mathrm{z}=10 \mathrm{~m}$ carries charge $20 \mathrm{nC} / \mathrm{m}^{2}$. The electric field intensity at the origin is \qquad
(A) $-10 \pi a_{z} V / m$
(B) $-18 \pi a_{z} V / m$
(C) $-72 \pi a_{z} V / m$
(D) $-360 \pi a_{z} V / m$
c. A potential field is given by $\mathrm{V}=3 \mathrm{x}^{2} \mathrm{y}-\mathrm{yz}$. Which of the following is not true? \qquad
(A) At point (1, 0, - 1), V and E vanish
(B) $x^{2} y=1$ is an equipotential line on the $x y$-plane
(C) The equipotential surface $\mathrm{V}=-8$ passes through point $\mathrm{P}(2,-1,4)$
(D) The electric field at P is $12 a_{x}-8 a_{y}-a_{z} V / m$
d. Which of the following potentials does not satisfy Laplace's equation?
(A) $V=2 x+5$
(B) $V=10 x y$
(C) $V=r \cos \varnothing$
(D) $V=\rho \cos \phi+10$
e. In cylindrical coordinates, equation
$\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial \psi}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} \psi}{\partial \phi^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}+10=0$ is called \qquad
(A) Poisson's equation
(B) Laplace's equation
(C) Helmholtz's equation
(D) Equation of continuity
f. One of these equations is not Maxwell's equation for a static electromagnetic field in a linear homogeneous medium \qquad
(A) $\oint \bar{B} \cdot \overline{d L}=\mu_{0} I$
(B) $\nabla^{2} A=-\mu_{0} \bar{J}$
(C) $\nabla \cdot \mathbf{B}=0$
(D) $\oint \mathbf{D} \cdot d \mathbf{S}=Q$
g. Which of these formulas is wrong
(A) $B_{1 n}=B_{2 n}$
(B) $B_{2}=\sqrt{B_{2 n}^{2}+\overline{B_{2 t}^{2}}}$
(C) $H_{1}=H_{1 n}+H_{1 t}$
(D) $\mathbf{a}_{n 21} \times\left(\mathbf{H}_{1}-\mathbf{H}_{2}\right)=\mathbf{K}$,
where $a_{n 21}$ is a unit vector normal to the interface and directed from region 2 to region 1
h. In a certain medium, $E=10 \cos \left(10^{8} t-3 y\right) \overline{a_{x}} V / \mathrm{m}$. What type of medium is it?
(A) Free space
(B) Perfect conductor
(C) Perfect dielectric
(D) Lossless dielectric
i. Given that $\mathrm{H}=0.5 \mathrm{e}^{-0.1 \mathrm{x}} \sin \left(10^{6} \mathrm{t}-2 \mathrm{x}\right) \mathrm{a}_{\mathrm{y}} \mathrm{A} / \mathrm{m}$, which of these statements are incorrect
(A) The wave travels along a_{x}
(B) $\omega=10^{6} \mathrm{rad} / \mathrm{s}$
(C) $\beta=-2 \mathrm{rad} / \mathrm{m}$
(D) $\alpha=0.1 \mathrm{~Np} / \mathrm{m}$
j. VSWR for a perfectly matched load is
(A) 0
(B) 1
(C) ∞
(D) none of these

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. Given a vector field $D=r \sin \phi a_{r}-\frac{1}{r} \sin \theta \cos \phi a_{\theta}+r^{2} a_{\phi}$

Determine
(i) D at $\mathrm{P}\left(10,150^{\circ}, 330^{\circ}\right)$
(ii) The component of D tangential to the spherical surface $\mathrm{r}=10$ at P
(iii) A unit vector at P perpendicular to D and tangential to the cone $\theta=150^{\circ}$
b. Given $\mathrm{W}=\mathrm{x}^{2} \mathrm{y}^{2}+\mathrm{xyz}$. Compute $\nabla \mathrm{W}$ and the direction derivative $d W / d l$ in the direction $3 a_{x}+4 a_{y}+12 a_{z}$ at $(2,-1,0)$
c. If $G(r)=10 e^{-2 z}\left(\rho \overline{a_{\rho}}+\overline{a_{z}}\right)$. Determine the flux of G out of that entire surface of the cylinder $\rho=1,0 \leq \mathrm{z} \leq 1$. Confirm the result using the divergence theorem (6)
Q. 3 a. A charge distribution with spherical symmetry has density $\rho_{v}=\left\{\begin{array}{cc}\frac{\rho_{0} r}{R}, & 0 \leq r \leq R \\ 0, & r>R\end{array}\right.$. Determine E everywhere.
b. Given the potential $\mathrm{V}=\frac{10}{\mathrm{r}^{2}} \sin \theta \cos \phi$
(i) Find the electric flux density D at $(2, \pi / 2,0)$.
(ii) Calculate the work done in moving a $10-\mu \mathrm{C}$ charge from point A (1, $30^{\circ} 120^{\circ}$) to $\mathrm{B}\left(4,90^{\circ}, 60^{\circ}\right)$.
Q. 4 a. The potential field $V=2 x^{2} y z-y^{3} z$ exists in a dielectric medium having $\varepsilon=2 \varepsilon_{0}$
(i) Does V satisfy Laplace's equation?
(ii) Calculate the total charge within the unit cube $0<\mathrm{x}, \mathrm{y}, \mathrm{z},<1 \mathrm{~m}$.
b. Conducting spherical shells with radii $\mathrm{a}=10 \mathrm{~cm}$ and $\mathrm{b}=30 \mathrm{~cm}$ are maintained at a potential difference of 100 V such that $\mathrm{V}(\mathrm{r}=\mathrm{b})=0 \mathrm{~V}(\mathrm{r}-\mathrm{a})=100 \mathrm{~V}$. Determine V and E in the region between the shells. If $\varepsilon_{\mathrm{r}}=2.5$ in the region, determine the total charge induced on the shells and the capacitance of the capacitor.
c. Derive Poisson's and Laplace's equation.
Q. 5 a. State and Explain Biot-Savart Law for magnetic field. Using this law derive expression for magnetic field intensity at a point due to a finite length current element carrying current ' I ' lying on z -axis in cylindrical co-ordinates.
b. A circular loop located on $x^{2}+y^{2}=9, z=0$ carries a direct current of 10 A along a_{ϕ}. Determine H at ($0,0,-4$).
c. Planes $z=0$ and $z=4$ carry current $K=-10 a_{x} A / m$ and $K=10 a_{x} A / m$, respectively. Determine H at
(i) $(1,1,1)$
(ii) $(0,-3,10)$
Q. 6 a. A rectangular loop carrying current I_{2} is placed parallel to an infinitely long filamentary wire carrying current I_{1} as shown in figure 1 . Show that the force experienced by the loop is given by $\mathrm{F}=-\frac{\mu_{0} \mathrm{I}_{1} \mathrm{I}_{2} \mathrm{~b}}{2 \pi}\left[\frac{1}{\rho_{0}}-\frac{1}{\rho_{0}+\mathrm{a}}\right] \mathrm{a}_{\rho} \mathrm{N}$

b. Given that $H_{1}=-2 a_{x}+6 a_{y}+4 a_{z} A / m$ in region $y-x-2 \leq 0$ where $\mu_{1}=5 \mu_{0}$ calculate
(i) M_{1} and B_{1}
(ii) H_{2} and B_{2} in region $\mathrm{y}-\mathrm{x}-2 \geq 0$ where $\mu_{2}=2 \mu_{0}$
Q. 7 a. Let $\mu=3 \times 10^{-5} \mathrm{H} / \mathrm{m}, \quad \in=1.2 \times 10^{-10} \mathrm{~F} / \mathrm{m}$ and $\sigma=0$ everywhere. If $\overline{\mathrm{H}}=2 \cos \left(10^{10} \mathrm{t}-\beta \mathrm{x}\right) \overline{\mathrm{a}_{\mathrm{z}}} \mathrm{A} / \mathrm{m}$ use Maxwell's equations to obtain \bar{B}, \bar{D} and \bar{E}.

(6)

b. The electric field and magnetic field in free space are given
by $\mathrm{E}=\frac{50}{\rho} \cos \left(10^{6} \mathrm{t}+\beta \mathrm{z}\right) \mathrm{a}_{\phi} \mathrm{V} / \mathrm{m}$
$H=\frac{H_{0}}{\rho} \cos \left(10^{6} t+\beta z\right) \overline{a_{\rho}} A / m$
Express these in phasor from and determine the constants H_{0} and β such that the fields satisfy Maxwell's equations.
c. A lossy dielectric has an intrinsic impedance of $200 \angle 30^{0} \Omega$ at a particular frequency. If, at that frequency, the plan wave propagating through the dielectric has magnetic field component
$H=10 e^{-\alpha x} \cos \left(\omega t-\frac{1}{2} x\right) a_{y} A / m$
Find E and α. Determine the skin depth and wave polarization.
Q. 8 a. Show that the directive gain of the Hertzian dipole is
$\mathrm{G}_{\mathrm{d}}(\theta, \phi)=1.5 \sin ^{2} \theta$
and that of the half - wave dipole is
$\mathrm{G}_{\mathrm{d}}(\theta, \phi)=1.64 \frac{\cos ^{2}\left(\frac{\pi}{2} \cos \theta\right)}{\sin ^{2} \theta}$
b. The radiation intensity of a certain antenna is
$U(\theta, \phi)=\left[\begin{array}{cc}2 \sin \theta \sin ^{3} \phi, & 0 \leq \theta \leq \pi, 0 \leq \phi \leq \pi \\ 0, & \text { elsewhere }\end{array}\right.$
Determine the directivity of the antenna.
Q. $9 \quad$ Write a note on:
(i) Skip distance
(ii) Maximum Usable Frequency
(iii) Critical Frequency
(iv) Ionospheric Layers

