ROLL NO.

Code: AE59/AE110

Subject: CIRCUIT THEORY & DESIGN

AMIETE – ET (Current & New Scheme)

Time: 3 Hours

JUNE 2015

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
- **Q.1** Choose the correct or the best alternative in the following: (2×10)

a. Which of the following is not a passive element?

(A) Resistance	(B) Capacitance
(C) Inductance	(D) Transistor

b. If any network has 'b' branches & 'n' nodes then minimum number of equations required to solve this network are

(A) $b - n$	(B) $b - n - 1$
(C) $b - n + 1$	(D) $2(b-n)$

c. Laplace transform of $e^{-at} \cos \omega t$ is

(A)
$$\frac{s+a}{(s+a)^2+\omega^2}$$
 (B) $\frac{s}{s^2+\omega^2}$
(C) $\frac{s-a}{(s-a)^2+\omega^2}$ (D) $\frac{\omega^2}{(s+a)^2+\omega^2}$

1

d. Final value of function $X(s) = \frac{7s + 20}{s(s+5)}$

(A) 0 (B)
$$\infty$$

(C) 4 (D) $7/5$

- e. What is Thevenin's voltage (V_{TH}) & Thevenin Resistance (R_{TH}) at 'ab' of the network shown in Fig.1?
 - (A) 6V, 4Ω
 (B) 10V, 4Ω
 (C) 14V, 4Ω
 (D) 16V, 4Ω

AE59/AE110/JUNE 2015

ROLL NO.

Code: AE59/AE110

Subject: CIRCUIT THEORY & DESIGN

f. Z Parameters of network shown in Fig.2 are

$(\mathbf{A}) \mathbf{Z} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$(\mathbf{B})\begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix}$
$(\mathbf{C})\begin{bmatrix}\mathbf{R} & \mathbf{R}\\ \mathbf{R} & \mathbf{R}\end{bmatrix}$	(D) Does not exist

- g. What is transfer function of network which has pole zero plot as shown in Fig.3 is
 - (A) $(s + 1) (s + 2) / s(s^{2} + 4)$ (B) $s(s^{2} + 4) / (s + 1)(s + 2) / (s^{2} + 4)$ (C) $s(s + 1)(s + 2) / (s^{2} + 4)$ (D) $\frac{s(s + 2)}{(s + 1)(s^{2} + 4)}$

h. Which of the following statement is wrong regarding positive real function, $\frac{N(s)}{D(s)}$

- (A) All coefficients in N(s) & D(s) must be real & positive
- (B) D(s) must be Hurwitz Polynomial
- (C) Residues may be negative
- (D) $M_1M_2 N_1N_2 \ge 0$ for all ω
- i. Inverse Laplace transform of $\frac{1}{(s+1)(s+2)}$

(A)
$$\frac{1}{2} \left(e^{-t} - e^{-2t} \right)$$

(B) $e^{-t} - e^{-2t}$
(C) $e^{-t} + e^{-2t}$
(D) $e^{-t} + 2e^{-2t}$

j. Which of the following is II order butterworth Polynomial?

(A) $s^2 + 1.414s + 1$	(B) $s^2 + s + 1$
(C) $s^2 + 1.618s + 1$	(D) $s^2 + 0.636s + 1$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

b. Calculate I_1, I_2 and V_x in the circuit shown in Fig.5.

2

(8)

ROLL NO.

Code: AE59/AE110

Subject: CIRCUIT THEORY & DESIGN

Q.3 a. For the circuit as shown in Fig.6 switch S is changed from position 'a' to 'b' at

t = 0. Find values of i,
$$\frac{di}{dt}$$
 and $\frac{d^2i}{dt^2}$ at t = 0. (8)

b. In a series R-C circuit, the value of $R = 10\Omega \& C = 25 \text{ nF}$, A sinusoidal voltage of 50 MHz is applied and the maximum voltage across the capacitor is 2.5V, find the maximum voltage across the series combination. (4)

- c. Find the solution of the equation $\frac{dx}{dt} + 2x = 10$ with initial value x(0) = 2. (4)
- **Q.4** a. Consider R-L series circuit as shown in Fig.7 here i(0) = 3A. using Laplace transform find current i(t) at $t \ge 0$. (8)
 - b. Find the current i(t) for the network using Laplace Transform shown in Fig.8.

- b. Find Z(s) for the network shown in Fig.10 (8)
- **Q.6** a. For the circuit shown in Fig.11 obtain voltage transfer function. (4)

3

- b. Draw Pole- Zero Plot for $Z(s) = \frac{s+1}{s^2 + 2s + 2}$ (4)
- c. Test the positive realness of $F(s) = \frac{2s^2 + 2s + 1}{s^3 + 2s^2 + s + 2}$ (8)

(8)

AE59/AE110/JUNE 2015

Code: AE59/AE110

_

Subject: CIRCUIT THEORY & DESIGN

b. The Y Parameter of the network are $Y = \begin{bmatrix} 2 & 4 \\ 3 & 1 \end{bmatrix}$. Obtain h Parameters. (4)

c. The network shown in Fig.13 consists of a resistive T and a resistive π network connected in parallel. Determine Y parameter for overall network. (8)

Q.8 An Impedance function has the pole & zero pattern shown in the Fig.14. If $Z(-2) = -\frac{136}{16}$ obtain Foster – I & Cauer – I forms of this impedance function. (here 0 shows zeros and X shows poles). (16)

Q.9 a. Show that the
$$\frac{V_2}{V_g}$$
 for Double terminated lattice shown in Fig. 15 is $\frac{1}{(7 + R)}$

$$\frac{V_2}{V_g} = \frac{\frac{1}{2}(Z_b - R)}{Z_b + R}$$
(8)

b. Draw optimum filter for the transfer impedance.

$$Z_{21}(s) = \frac{0.577}{s^3 + 1.27s^2 + 1.250s + 0.577}$$
(8)

