\qquad

AMIETE - ET (Current \& New Scheme)

Time: 3 Hours
JUNE 2015
Max. Marks: 100
PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. Which of the following is not a passive element?
(A) Resistance
(B) Capacitance
(C) Inductance
(D) Transistor
b. If any network has 'b' branches \& ' n ' nodes then minimum number of equations required to solve this network are
(A) $\mathrm{b}-\mathrm{n}$
(B) $\mathrm{b}-\mathrm{n}-1$
(C) $\mathrm{b}-\mathrm{n}+1$
(D) $2(\mathrm{~b}-\mathrm{n})$
c. Laplace transform of $\mathrm{e}^{-\mathrm{at}} \cos \omega \mathrm{t}$ is
(A) $\frac{s+a}{(s+a)^{2}+\omega^{2}}$
(B) $\frac{\mathrm{s}}{\mathrm{s}^{2}+\omega^{2}}$
(C) $\frac{s-a}{(s-a)^{2}+\omega^{2}}$
(D) $\frac{\omega^{2}}{(s+a)^{2}+\omega^{2}}$
d. Final value of function $X(s)=\frac{7 s+20}{s(s+5)}$
(A) 0
(B) ∞
(C) 4
(D) $7 / 5$
e. What is Thevenin's voltage $\left(\mathrm{V}_{\mathrm{TH}}\right)$ \& Thevenin Resistance (R_{TH}) at 'ab' of the network shown in Fig.1?
(A) $6 \mathrm{~V}, 4 \Omega$
(B) $10 \mathrm{~V}, 4 \Omega$
(C) $14 \mathrm{~V}, 4 \Omega$
(D) $16 \mathrm{~V}, 4 \Omega$

Fig. 1
f. Z Parameters of network shown in Fig. 2 are
(A) $\mathrm{Z}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
(В) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
(C) $\left[\begin{array}{ll}R & R \\ R & R\end{array}\right]$
(D) Does not exist

Fig. 2

Fig. 3
(A) $(\mathrm{s}+1)(\mathrm{s}+2) / \mathrm{s}\left(\mathrm{s}^{2}+4\right)$
(B) $s\left(s^{2}+4\right) /(s+1)(s+2) /\left(s^{2}+4\right)$
(C) $\mathrm{s}(\mathrm{s}+1)(\mathrm{s}+2) /\left(\mathrm{s}^{2}+4\right)$
(D) $\frac{\mathrm{s}(\mathrm{s}+2)}{(\mathrm{s}+1)\left(\mathrm{s}^{2}+4\right)}$
h. Which of the following statement is wrong regarding positive real function, $\frac{N(s)}{D(s)}$
(A) All coefficients in $\mathrm{N}(\mathrm{s}) \& \mathrm{D}(\mathrm{s})$ must be real \& positive
(B) $\mathrm{D}(\mathrm{s})$ must be Hurwitz Polynomial
(C) Residues may be negative
(D) $\mathrm{M}_{1} \mathrm{M}_{2}-\mathrm{N}_{1} \mathrm{~N}_{2} \geq 0$ for all ω
i. Inverse Laplace transform of $\frac{1}{(s+1)(s+2)}$
(A) $\frac{1}{2}\left(\mathrm{e}^{-\mathrm{t}}-\mathrm{e}^{-2 \mathrm{t}}\right)$
(B) $e^{-t}-e^{-2 t}$
(C) $e^{-t}+e^{-2 t}$
(D) $e^{-t}+2 e^{-2 t}$
j. Which of the following is II order butterworth Polynomial?
(A) $\mathrm{s}^{2}+1.414 \mathrm{~s}+1$
(B) $\mathrm{s}^{2}+\mathrm{s}+1$
(C) $\mathrm{s}^{2}+1.618 \mathrm{~s}+1$
(D) $\mathrm{s}^{2}+0.636 \mathrm{~s}+1$

Answer any FIVE Questions out of EIGHT Questions.
 Each question carries 16 marks.

Q. 2 a. Calculate current 'I' in circuit shown in Fig. 4 using Loop analysis.

b. Calculate I_{1}, I_{2} and V_{X} in the circuit shown in Fig.5.

ROLL NO. \qquad
Q. 3 a. For the circuit as shown in Fig. 6 switch S is changed from position 'a' to 'b' at $\mathrm{t}=0$. Find values of $\mathrm{i}, \frac{\mathrm{di}}{\mathrm{dt}}$ and $\frac{\mathrm{d}^{2} \mathrm{i}}{\mathrm{dt}^{2}}$ at $\mathrm{t}=0$.

b. In a series R-C circuit, the value of $\mathrm{R}=10 \Omega \& \mathrm{C}=25 \mathrm{nF}, \mathrm{A}$ sinusoidal voltage of 50 MHz is applied and the maximum voltage across the capacitor is 2.5 V , find the maximum voltage across the series combination.
c. Find the solution of the equation $\frac{\mathrm{dx}}{\mathrm{dt}}+2 \mathrm{x}=10$ with initial value $\mathrm{x}(0)=2$.
Q. 4 a. Consider R-L series circuit as shown in Fig. 7 here i $(0)=3$ A. using Laplace transform find current $\mathrm{i}(\mathrm{t})$ at $\mathrm{t} \geq 0$.
b. Find the current $\mathrm{i}(\mathrm{t})$ for the network using Laplace Transform shown in Fig.8.

Q. 5 a. Find Norton's equivalent along a, b terminals for the network shown in Fig. 9
b. Find $Z(s)$ for the network shown in Fig. 10
Q. 6 a. For the circuit shown in Fig. 11 obtain voltage transfer function.
(4)
b. Draw Pole- Zero Plot for $Z(s)=\frac{s+1}{s^{2}+2 s+2}$
c. Test the positive realness of $F(s)=\frac{2 s^{2}+2 s+1}{s^{3}+2 s^{2}+s+2}$

Fig. 10

Fig. 11

ROLL NO.

Q. 7 a. Obtain h -parameter for the circuit shown in Fig. 12
(4)

b. The Y Parameter of the network are $Y=\left[\begin{array}{ll}2 & 4 \\ 3 & 1\end{array}\right]$. Obtain h Parameters.
c. The network shown in Fig. 13 consists of a resistive T and a resistive π network connected in parallel. Determine Y parameter for overall network.
Q. 8 An Impedance function has the pole \& zero pattern shown in the Fig.14. If Z (-2) $=-\frac{136}{16}$ obtain Foster - I \& Cauer - I forms of this impedance function. (here 0 shows zeros and X shows poles).
Q. 9 a. Show that the $\frac{\mathrm{V}_{2}}{\mathrm{~V}_{\mathrm{g}}}$ for Double terminated lattice shown in Fig. 15 is $\frac{\mathrm{V}_{2}}{\mathrm{~V}_{\mathrm{g}}}=\frac{\frac{1}{2}\left(\mathrm{Z}_{\mathrm{b}}-\mathrm{R}\right)}{\mathrm{Z}_{\mathrm{b}}+\mathrm{R}}$
b. Draw optimum filter for the transfer impedance.
$Z_{21}(\mathrm{~s})=\frac{0.577}{\mathrm{~s}^{3}+1.37 \mathrm{~s}^{2}+1.359 \mathrm{~s}+0.577}$

Fig. 15

Fig. 14

