ROLL NO. _

Code: AE56/AC56/AT56 Subject: ENGINEERING MATHEMATICS – II AE107/AC107/AT107

AMIETE – ET/CS/IT (Current & New Scheme)

Time: 3 Hours

JUNE 2015

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

- a. The invariant points of the transformation $w = \frac{5z+4}{z+5}$ are
 - (A) (2, 2)
 (B) (-2, -2)
 (C) (2, -2)
 (D) None of these
- b. The value of the integral $\int_{C} \frac{1+2z}{z(1+z)} dz$, where C is $|z| = \frac{1}{2}$, is
 - (A) πi (B) $2\pi i$ (C) $3\pi i$ (D) 0

c. The residue of
$$\frac{ze^z}{(z-1)^3}$$
 at its pole is

(A) 0 **(B)** $\frac{e}{2}$

(C) e (D)
$$\frac{3e}{2}$$

d. If \vec{A} is a constant vector and $\vec{R} = xi + yj + zk$, then grad ($\vec{A}.\vec{R}$) is equal to

(A)
$$\vec{A}$$
 (B) \vec{R}
(C) $\vec{A} + \vec{R}$ (D) $\vec{A} \cdot \vec{R}$

e. If R = xi + yj + zk, then $\int \vec{R} \cdot d\vec{s}$, s being the surface of unit sphere is

	s	
(A) π		(B) 2 π
(C) 4 π		(D) 8 π

1

ROLL NO.

Subject: ENGINEERING MATHEMATICS - II Code: AE56/AC56/AT56 AE107/AC107/AT107

ALIVIALIVI									
f.	f. The missing term in the following table is:								
	x: ()	1	2	3	4			
	f(x):	1	3	9	-	81			
	(A) 33						(B) 31		
	(C) 30						(D) 27		
g.	The so	lutior	ı of p√	$\sqrt{x} + q\sqrt{x}$	$\sqrt{y} = \sqrt{z}$	is			
	(A) √	$\overline{x}\sqrt{y}$	$= f\left(\sqrt{y}\right)$	$\overline{\sqrt{z}}$			(B) $\sqrt{z} + \sqrt{y} = f\left(\sqrt{y} + \sqrt{x}\right)$ (D) $\sqrt{z} - \sqrt{x} = f\left(\sqrt{x} - \sqrt{y}\right)$		
	(C) √	$\overline{z} + $	$\overline{\mathbf{x}} = f(\mathbf{y})$	$\sqrt{x} + \sqrt{y}$	y)		(D) $\sqrt{z} - \sqrt{x} = f\left(\sqrt{x} - \sqrt{y}\right)$		
h.	-						B in 80% of the cases. The percentage of ch other in stating the same fact is		
	(A) 209	%					(B) 25%		
	(C) 35	%					(D) 40%		
i.	If f(x)	$=\begin{cases} kx\\ 0 \end{cases}$	xe ^{-x} ,	x > elsewł	0 , is there	the	p.d.f. of x, then k is		
	(A) 1						(B) 2		
	(C) 4						(B) 2 (D) $\frac{1}{2}$		
j.	If a random variable has a Poisson distribution such that $P(1) = P(2)$, then mean of the distribution is				istribution such that $P(1) = P(2)$, then mean				
	(A) 1						(B) 2		
	(C) 3						(D) 4		

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 Show that every analytic function w = f(z) define two families of curves, a. which from an orthogonal system. (8)
 - b. Show that the transformation $\omega = \sin z$, maps the families of lines x = constantand y = constant into two families of confocal central conics. (8)

Q.3 a. If
$$f(\alpha) = \oint_C \frac{3z^2 + 7z + 1}{z - \alpha} dz$$
, where C is the circle $x^2 + y^2 = 4$, find the values of
(i) F' (1-i) (ii) F''(1-i) (8)

b. Find the Laurent's series expression of $\frac{z^2 - 6z - 1}{(z - 1)(z - 3)(z + 2)}$ in the region 3 < |z+2| < 5. (8)

2

Code: AE56/AC56/AT56 Subject: ENGINEERING MATHEMATICS – II AE107/AC107/AT107

- Q.4a. Show that Curl Curl $\vec{F} = \text{grad div } \vec{F} \cdot \nabla^2 \vec{F}$.(8)b. Find the values of λ and μ so that the surface $\lambda x^2 y + \mu z^3 = 4$, may cut the surface $5x^2 = 2yz + 9x$ orthogonally at (1, -1, 2).(8)Q.5a. If $\vec{F} = (5xy 6x^2) \mathbf{i} + (2y 4x) \mathbf{j}$, evaluate $\int_C \vec{F} \cdot d\vec{R}$ along the curve C in the xy plane, $y = x^3$ from the point (1, 1) to (2, 8).(8)b. Use Divergence theorem to evaluate $\iint_S \vec{F} \cdot d\vec{S}$, where $\vec{F} = x^3 \mathbf{i} + y^3 \mathbf{j} + z^3 \mathbf{k}$, and S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ (8)
- **Q.6** a. Estimate the values of f(22) and f(42) from the following available data: (8)

x:	20	25	30	35	40	45
$f(\mathbf{x})$:	354	332	291	260	231	204

b. Find an approximate value of $\log_{e}5$ by calculating to 4 decimal places, by Simpson's $\frac{1}{3}$ rule, $\int_{0}^{5} \frac{dx}{4x+5}$, by dividing the range into 10 equal parts. (8)

Q.7 a. Solve the equation
$$\frac{y-z}{yz}p + \frac{z-x}{zx}q = \frac{x-y}{xy}$$
 (8)

- b. Use Charpit's method to solve: $2zx - px^2 - 2qxy + pq = 0$ (8)
- **Q.8** a. A student takes his examination in four subjects A, B, C, D. His chances of passing in A are $\frac{4}{5}$, in B $\frac{3}{4}$, in C $\frac{5}{6}$ and in D are $\frac{2}{3}$. To qualify, he must pass in A and at least two other subjects. What is the probability that he qualifies.
 - (8)
 b. A ball is transferred from an urn containing two white and three black balls to another urn containing four white and five black balls. A white ball is then taken out from second urn. What is the probability that the transferred ball is white?
 (8)
- Q.9 a. The diameter of an electric cable is assumed to be a continuous variable with p.d.f, f(x) = k x (1-x), $0 \le x \le 1$. Find the value of k and also find mean and variance of x. (8)
 - b. A Car- hire firm has two cars which it hires out day by day. The number of demands for a car on each day is distributed as a Poisson distribution with mean 1.5, calculate the proportion of days
 (i) on which there is no demand
 (ii) on which demand is refused (e^{-1.5} = 0.2231)

3