ROLL NO.

Code: AE55

Subject: PRINCIPLES OF ELECTRICAL ENGINEERING

AMIETE – ET (Current Scheme)

Time: 3 Hours

JUNE 2015

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10)

a. If a current increases from zero to one ampere in 0.1 seconds in a coil of inductance 5 mH, the magnitude of the induced emf will be

(A) 0.005V	(B) 0.5V
(C) 0.05V	(D) 5V

- b. A bar magnet is released from rest along the axis of a very long vertical copper tube, after some time the magnet......
 - (A) will stop in the tube
 - (**B**) will move at almost constant speed
 - (C) will move with an accelerating
 - (**D**) will oscillate

c. The core of the transformer is made of

- (A) Annealed copper
- (B) Silicon steel
- (C) Seasoned wood
- (D) Aluminium
- d. If the full- load iron loss of a transformer is 100W at maximum efficiency, what will be its copper loss at half the load?

(A) 100W	(B) 50W
(C) 25W	(D) none of these

e. The number of parallel paths is the armature winding of a four-pole wave connected dc machine having 36 coil-sides is

(A) 28	(B) 14
(C) 4	(D) 2

Code: AE55 Subject: PRINCIPLES OF ELECTRICAL ENGINEERING

f.	A dc series motor should always be s	started with load because	
	 (A) at no – load it will rotate at dang (B) at no – load it will not develop h (C) it connot start without load (D) it draws a small amount of current 	gerously high speed high starting torque ent at no-load	
g.	A 4-pole, 1200 rpm alternator will generate emf at a frequency of		
	(A) 60 Hz (C) 40Hz	(B) 50Hz (D) 25Hz	
h.	In a 50Hz, three phase induction m rotor current is about	notor running at 4% slip, the frequency of	
	(A) 50 Hz (C) 2 Hz	(B) 10 Hz (D) Zero	
i.	The motor used in a ceiling fan is		
	(A) split-phase motor(C) shaded pole motor	(B) capacitor start motor(D) AC series motor	
j.	Total installed electric power generat	tion capacity of India is	
	(A) 220000MW	(\mathbf{P}) 1 20000 MW	

(A) 220000MW	(B) 1,2000MW
(C) 22000MW	(D) 36000MW

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. What is meant by hysteresis? Explain the terms retentivity and coercivity. (8)

b. A mild steel ring having a cross-sectional area of 500 mm² and a mean circumference of 400 mm has a coil of 200 turns wound uniformly around it. Calculate:

(i) The reluctance of the ring

(ii) The current required to produce a flux of $800 \mu wb$ in the ring. Assume the relative permeability of mild steel to be 380. (8)

- Q.3 a. Explain how various losses in a transformer can be found from practical tests without actually loading the transformer. (8)
 - b. A 10 kVA, 200V/400V, 50 Hz, single-phase transformer gives the following test results:
 Open-circuit test (HT windings open-circuited): 200V, 1.3A, 120W
 Short- circuit test (LT winding short-circuited): 22V, 30A, 200W

ROLL NO.

Code:	AF	255 Subject: PRINCIPLES OF ELECTRICAL ENG	INEERING
		Calculate (i) the magnetising current and the current corresponding to core normal voltage and frequency (ii) the parameters of equivalent circuit as related to LT winding.	loss at (8)
Q.4	a.	Draw the power flow diagram for a dc motor and explain it.	(8)
	b.	 A 6-Pole, lap –connected armature with 864 conductors dc motor ta armature current of 110A at 480V, the armature circuit has a resista 0.2Ω. The flux per pole is 0.05Wb. Calculate: (i) The speed and 	akes an ance of
		(ii) The gross torque developed by the armature.	(8)
Q.5	a.	Explain the effect of change in excitation of a synchronous motor on (i) its armature current	
		(11) its power factor	(8)
	b.	State the advantages of having rotating field system rather than a mature system in a synchronous machine.	cotating (8)
Q.6	a.	Prove that the frequency of the rotor induced emf in an induction motor times the stator supply frequency.	r is slip (8)
	b.	A three-phase, 6-pole, 50Hz induction motor develops maximum torque at a peed of 940 rpm. If the rotor resistance per phase is 0.1Ω , determine the stand till rotor reactance. (8)	
Q.7		Write short notes on any <u>TWO</u> :	(8×2)
		(i) Shaded pole motor(ii) Hysteresis motor(iii) Universal motor	
Q.8	a.	With the help of a neat diagram explain the functions of various comport of a coal fired generating station.	ients (8)
	b.	With the help of a neat diagram explain the layout for a storage type hydrower plant.	lro (8)
Q.9		Write short notes on the following:	(8×2)
		(i) HVDC Transmission(ii) Energy Storage	

3