ROLL NO.

Code: AE54/AC54/AT54/AE104

Subject: LINEAR ICs & DIGITAL ELECTRONICS

## AMIETE – ET/CS/IT (Current & New Scheme)

Time: 3 Hours

# **JUNE 2015**

Max. Marks: 100

 $(2 \times 10)$ 

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

### NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions, selecting at least TWO questions from each part, each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

#### Q.1 Choose the correct or the best alternative in the following:

a. If the base currents for the emitter coupled transistors of a differential amplifier are  $18\mu A$  and  $22\mu A$ , then the input bias current is

| ( <b>A</b> ) 11μA | <b>(B)</b> 20µA   |
|-------------------|-------------------|
| ( <b>C</b> ) 11mA | ( <b>D</b> ) 22mA |

b. An OPAMP with a slew rate of  $0.5 V/\mu s$  is used in an application. The minimum time required for the circuit to change the output by 7V is

| ( <b>A</b> ) 14µs | <b>(B)</b> 41µs |
|-------------------|-----------------|
| ( <b>C</b> ) 14ms | <b>(D)</b> 41ms |

c. The common mode input to a certain differential amplifier, having a differential gain of 125 is  $4 \sin 200\pi t$  volts. The common mode output if CMRR is 60dB

**(B)** 0

(D) None of these

(A)  $0.5 \sin(200\pi t)$ (C) 1

d. In the circuit shown, in Fig.1, which LED glows if  $V_i = 1V$ 

(A) Red LED
(B) Green LED
(C) Both Red LED and Green LED
(D) Neither Red LED nor Green LED





ROLL NO.

Subject: LINEAR ICs & DIGITAL ELECTRONICS

e. For a particular regulator, the output voltage on no load is observed as 10V while the full load output voltage is observed is 9.8 V. Then the load regulation is

|    | <ul><li>(A) 2.04%</li><li>(C) 1%</li></ul> | ( <b>B</b> ) 1.02%<br>( <b>D</b> ) 0 |
|----|--------------------------------------------|--------------------------------------|
| f. | $(214)_{10} = ()_{16}$                     |                                      |
|    | (A) A6<br>(C) C6                           | ( <b>B</b> ) B6<br>( <b>D</b> ) D6   |

g. Grady code of 15 is

| ( <b>A</b> ) 1000 | <b>(B)</b> 0001   |
|-------------------|-------------------|
| ( <b>C</b> ) 1010 | ( <b>D</b> ) 0101 |

h. The minimum expression for the Boolean function,  $Y(A, B, C) = \sum m(0,2,4,6)$  is

| (A) C | $(\mathbf{B}) \ \overline{\mathbf{C}}$ |
|-------|----------------------------------------|
| (C) A | ( <b>D</b> ) B                         |

i. The output  $Q_n$  of a J-K flip-flop is 0. It changes to 1 when a clock pulse is applied. The inputs  $J_n$  and  $K_n$  are respectively

| (A) 1 and X          | <b>(B)</b> 0 and X   |
|----------------------|----------------------|
| ( <b>C</b> ) X and 0 | ( <b>D</b> ) X and 1 |

j. The minimum number of NAND gates required to implement A + AB + ABC is equal to

| ( <b>A</b> ) 0 | <b>(B)</b> 1 |
|----------------|--------------|
| ( <b>C</b> ) 4 | <b>(D)</b> 7 |

#### PART (A) Answer At least TWO questions. Each question carries 16 marks.

- **Q.2** a. Write a note IC's classification.
  - b. Reason out why integrators are preferred over differentiators in analog computers. (2)

(4)

|     | c. | With the help of a functional block diagram, explain the working of OPAMP.                                                                                                                                           | an<br>6)                 |
|-----|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|     | d. | An amplifier has a differential gain of 400 and CMRR of 50 dB.<br>$V_{in1} = 50 \text{mV}$ , $V_{in2} = 60 \text{mV}$ and $V_{noise} = 5 \text{mV}$ , determine the different output and common mode output.         | If<br>tial<br><b>4</b> ) |
| Q.3 | a. | Realize a non-inverting summer using OPAMP.                                                                                                                                                                          | 6)                       |
|     | b. | Discuss about frequency compensation of OPAMPs.                                                                                                                                                                      | 6)                       |
|     | c. | What are the requirements of a good instrumentation amplifier?                                                                                                                                                       | 4)                       |
| Q.4 | a. | With relevant equations show how OPAMP could be used as an integrator. (                                                                                                                                             | 5)                       |
|     | b. | Design an OPAMP Schmitt trigger for the following specifications. UTE 2V, LTP = -4V and output voltage swings between $\pm 10V$ . If the input $V_i = 5 \sin \omega t$ , plot the waveforms of the input and output. | P =<br>: is<br>7)        |
|     | c. | Differentiate between linear and non-linear operation of OPAMP. Give a example for each.                                                                                                                             | one<br>4)                |
| Q.5 | a. | Suggest suitable values of resistors and reference voltage for a 4 - bit R - ladder type DAC, if the resolution required is 0.5                                                                                      | 2R<br>4)                 |
|     | b. | With a neat sketch, explain the working of a successive approximation ADC                                                                                                                                            | •                        |
|     | c. | Discuss how OPAMP could be used as a free running oscillator.                                                                                                                                                        | 6)<br>6)                 |
|     | 1  | PART (B)<br>Answer At least TWO questions. Each question carries 16 marks.                                                                                                                                           |                          |
| Q.6 | a. | Discuss the advantages and limitations of digital techniques.                                                                                                                                                        | 8)                       |
|     | b. | Explain:<br>(i) BCD code (ii) Alphanumeric codes (                                                                                                                                                                   | 8)                       |
| Q.7 | a. | Perform the following operations:<br>(i) $(5531)_8 - (3261)_8 + (100)_{10}$<br>(ii) Find 'x' in $(211)_x = (152)_8$                                                                                                  | 4)                       |
|     | b. | Minimize the following logic function using K-map and implement it us logic gates                                                                                                                                    | ing                      |
|     |    | $Y(A, B, C, D) = \sum m(0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 14) $                                                                                                                                                    | 6)                       |

c. Realize a full subtractor using two half subtractors. (6)

ROLL NO.

- Q.8 a. Implement a half adder using multiplexers. (6)
  b. Design an edge-triggered J-K flip-flop using NAND, OR gates. Explain its operation for positive edge triggering. (10)
  Q.9 a. What is race around condition and how it is eliminated? (4)
  - b. Compare synchronous and asynchronous counters. Find the maximum frequency of a clock pulse at which the 4-bit ripple counter operates reliably. Assume delay of the flip-flops as 40 ns and the pulse width of strobe signal is 25 ns.
  - c. Discuss how shift registers could be used for the following applications:
     (i) SIPO
     (ii) Ring Counter
    - (iii) Sequence generator

(6)