AMIETE - ET/CS/IT (Current \& New Scheme)

Time: 3 Hours
Max. Marks: 100
PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions, selecting at least TWO questions from each part, each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. If the base currents for the emitter coupled transistors of a differential amplifier are $18 \mu \mathrm{~A}$ and $22 \mu \mathrm{~A}$, then the input bias current is
(A) $11 \mu \mathrm{~A}$
(B) $20 \mu \mathrm{~A}$
(C) 11 mA
(D) 22 mA
b. An OPAMP with a slew rate of $0.5 \mathrm{~V} / \mu \mathrm{s}$ is used in an application. The minimum time required for the circuit to change the output by 7 V is
(A) $14 \mu \mathrm{~s}$
(B) $41 \mu \mathrm{~s}$
(C) 14 ms
(D) 41 ms
c. The common mode input to a certain differential amplifier, having a differential gain of 125 is $4 \sin 200 \pi t$ volts. The common mode output if CMRR is 60 dB
(A) $0.5 \sin (200 \pi \mathrm{t})$
(B) 0
(C) 1
(D) None of these
d. In the circuit shown, in Fig.1, which LED glows if $\mathrm{V}_{\mathrm{i}}=1 \mathrm{~V}$
(A) Red LED
(B) Green LED
(C) Both Red LED and Green LED
(D) Neither Red LED nor Green LED

Fig. 1
e. For a particular regulator, the output voltage on no load is observed as 10 V while the full load output voltage is observed is 9.8 V . Then the load regulation is
(A) 2.04%
(B) 1.02%
(C) 1%
(D) 0
f. $(214)_{10}=()_{16}$
(A) A6
(B) B6
(C) C6
(D) D6
g. Grady code of 15 is
(A) 1000
(B) 0001
(C) 1010
(D) 0101
h. The minimum expression for the Boolean function, $\mathrm{Y}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\sum \mathrm{m}(0,2,4,6)$ is
(A) C
(B) $\overline{\mathrm{C}}$
(C) A
(D) B
i. The output Q_{n} of a J-K flip-flop is 0 . It changes to 1 when a clock pulse is applied. The inputs J_{n} and K_{n} are respectively
(A) 1 and X
(B) 0 and X
(C) X and 0
(D) X and 1
j. The minimum number of NAND gates required to implement $A+A \bar{B}+A \bar{B} C$ is equal to
(A) 0
(B) 1
(C) 4
(D) 7

PART (A)
Answer At least TWO questions. Each question carries 16 marks.
Q. 2 a. Write a note IC's classification.
(4)
b. Reason out why integrators are preferred over differentiators in analog computers.
c. With the help of a functional block diagram, explain the working of an OPAMP.
d. An amplifier has a differential gain of 400 and CMRR of 50 dB . If $\mathrm{V}_{\mathrm{in} 1}=50 \mathrm{mV}, \mathrm{V}_{\mathrm{in} 2}=60 \mathrm{mV}$ and $\mathrm{V}_{\text {noise }}=5 \mathrm{mV}$, determine the differential output and common mode output.
Q. 3 a. Realize a non-inverting summer using OPAMP.
b. Discuss about frequency compensation of OPAMPs.
c. What are the requirements of a good instrumentation amplifier?
Q. 4 a. With relevant equations show how OPAMP could be used as an integrator. (5)
b. Design an OPAMP Schmitt trigger for the following specifications. UTP = 2 V , LTP $=-4 \mathrm{~V}$ and output voltage swings between $\pm 10 \mathrm{~V}$. If the input is $\mathrm{V}_{\mathrm{i}}=5 \mathrm{Sin} \omega \mathrm{t}$, plot the waveforms of the input and output.
c. Differentiate between linear and non-linear operation of OPAMP. Give one example for each.
Q. 5 a. Suggest suitable values of resistors and reference voltage for a 4 - bit R-2R ladder type DAC, if the resolution required is 0.5
b. With a neat sketch, explain the working of a successive approximation ADC.
c. Discuss how OPAMP could be used as a free running oscillator.

PART (B)

Answer At least TWO questions. Each question carries 16 marks.
Q. 6 a. Discuss the advantages and limitations of digital techniques.
b. Explain:
(i) BCD code
(ii) Alphanumeric codes
(8)
Q. 7 a. Perform the following operations:
(i) $(5531)_{8}-(3261)_{8}+(100)_{10}$
(ii) Find ' x ' in $(211)_{\mathrm{x}}=(152)_{8}$
b. Minimize the following logic function using K-map and implement it using logic gates
$Y(A, B, C, D)=\sum m(0,1,2,3,4,7,8,9,10,11,12,14)$
c. Realize a full subtractor using two half subtractors.
Q. 8 a. Implement a half adder using multiplexers.
b. Design an edge-triggered J-K flip-flop using NAND, OR gates. Explain its operation for positive edge triggering.
Q. 9 a. What is race around condition and how it is eliminated?
b. Compare synchronous and asynchronous counters. Find the maximum frequency of a clock pulse at which the 4-bit ripple counter operates reliably. Assume delay of the flip-flops as 40 ns and the pulse width of strobe signal is 25 ns.
c. Discuss how shift registers could be used for the following applications:
(i) SIPO
(ii) Ring Counter
(iii) Sequence generator

