$\qquad$

## AMIETE - ET/CS/IT (Current \& New Scheme)

Time: 3 Hours

## JUNE 2015

Max. Marks: 100
please write your roll no. at the space provided on each page IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Q2 TO Q8 CAN BE ATTEMPTED BY BOTH CURRENT AND NEW SCHEME STUDENTS.
- Q9 HAS BEEN GIVEN INTERNAL OPTION FOR CURRENT SCHEME (CODE AE51/AC51/AT51) AND NEW SCHEME (CODE AE101/AC101/AT101) STUDENTS.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. If $x=r \cos \theta$ and $y=r \sin \theta$, then $\frac{\partial(x, y)}{\partial(r, \theta)}$ is equal to
(A) r
(B) $\theta$
(C) $r+\theta$
(D) r- $\theta$
b. The value of the double integral $\int_{0}^{1} \int_{x^{2}}^{2-x}(x y) d x d y$ is
(A) $\frac{3}{4}$
(B) $\frac{3}{8}$
(C) $\frac{3}{16}$
(D) 3
c. The matrix $\left[\begin{array}{ccc}3-x & 2 & 2 \\ 2 & 4-x & 1 \\ -2 & -4 & -1-x\end{array}\right]$ is singular if $x$ is equal to
(A) $(3,1)$
(B) $(1,2)$
(C) $(0,3)$
(D) $(2,3)$


## Code: AE51/AC51/AT51/ Subject: ENGINEERING MATHEMATICS - I

d. Taylor's series solution of $\frac{d y}{d x}=-x y, y(0)=1$, upto $x^{4}$ is
(A) $y(x)=1+\frac{x^{2}}{2}+\frac{x^{4}}{8}+$
(B) $y(x)=1-\frac{x^{2}}{2}-\frac{x^{4}}{8}-$
(C) $y(x)=1+\frac{x^{2}}{2}-\frac{x^{4}}{8}+$
(D) $y(x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{8}-$
e. If $z=\log \left(x^{2}+x y+y^{2}\right)$, then $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}$ is equal to
(A) 0
(B) 1
(C) 2
(D) $z$
f. The solution of $\frac{d^{2} y}{d x^{2}}+3 a \frac{d y}{d x}-4 a^{2} y=0$ is
(A) $y=C_{1} e^{-a x}+C_{2} e^{-4 a x}$
(B) $y=C_{1} e^{a x}+C_{2} e^{4 a x}$
(C) $\mathrm{y}=\mathrm{C}_{1} \mathrm{e}^{\mathrm{ax}}+\mathrm{C}_{2} \mathrm{e}^{-4 \mathrm{ax}}$
(D) $y=C_{1} e^{-a x}+C_{2} e^{4 a x}$
g. The value of the integral $\int_{0}^{\pi / 2} \sin ^{5} x \cos ^{3} x d x$ is equal to
(A) $\frac{3}{8}$
(B) $\frac{1}{8}$
(C) $\frac{1}{18}$
(D) $\frac{1}{24}$
h. If $P_{3}(x)=\frac{1}{2}\left(a x^{3}+b x\right)$, then
(A) $\mathrm{x} \mathrm{J}_{0}(\mathrm{x})$
(B) $\mathrm{x}_{2}(\mathrm{x})$
(C) $-\mathrm{x} \mathrm{J}_{0}$ (x)
(D) $-\mathrm{x}_{2}$ (x)
i. $\mathrm{J}_{1 / 2}(\mathrm{x})$ is equal to
$(\mathbf{A )} \mathrm{a}=-3, \mathrm{~b}=5$
(B) $\mathrm{a}=5, \mathrm{~b}=-3$
(C) $a=-3, b=-5$
(D) $\mathrm{a}=5, \mathrm{~b}=2$

## Code: AE51/AC51/AT51/ Subject: ENGINEERING MATHEMATICS - I

j. If the product of two eigen values of matrix $\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$ is 16 , then the third eigen value is
(A) 1
(B) 2
(C) 3
(D) 6

## Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.
Q. 2 a. If $u=f(x, y)$, where $x=\Phi(t)$ and $y=\varphi(t)$, show that $\frac{d u}{d t}=\frac{\partial u}{d x} \cdot \frac{d x}{d t}+\frac{\partial u}{\partial y} \cdot \frac{d y}{d t}$
b. Expand $f(x, y)=\sin (x y)$ in powers of $(x-1)$ and $\left(y-\frac{\pi}{2}\right)$ up to the second degree terms.
Q. 3 a. Change the order of integration and then evaluate $\int_{0}^{\infty} \int_{0}^{x} x e^{-\frac{x^{2}}{y}} d y d x$
b. Find the volume enclosed by the cylinders $x^{2}+y^{2}=2 a x$ and $z^{2}=2 a x$
Q. 4 a. Show that the equations $3 x+3 y+2 z=1, x+2 y=4,10 y+3 z=-2,2 x-3 y-z$ $=5$ are consistent and solve them.
b. Find the eigen values and eigen vectors of the matrix.

$$
\left[\begin{array}{lll}
2 & 2 & 1  \tag{8}\\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right]
$$

Q. 5 a. Solve the differential equation $\frac{d^{3} y}{d x^{3}}+2 \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=e^{2 x}+\sin 2 x$
b. Solve the differential equation $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=4 \cos \{\log (1+x)\}$

## Code: AE51/AC51/AT51/ Subject: ENGINEERING MATHEMATICS - I AE101/AC101/AT101

Q. 6 a. Use the method of false position to find the fourth root of 32 correct to three decimal places.
b. Apply Euler's method to solve for $y$ at $x=0.1$ from $\frac{d y}{d x}=x+y+x y, y(0)=1$ taking step size $\mathrm{h}=0.025$
Q. 7 a. Obtain the series solution of $\frac{d^{2} y}{d x^{2}}+x^{2} y=0$
b. Show that $\int_{a}^{b}(x-a)^{m}(b-x)^{n} d x=(b-a)^{m+n+1} \beta(m+1, n+1)$
Q. 8 a. Prove that $\int_{-1}^{1} P_{m}(n) P_{n}(n) d x=\left\{\begin{array}{cl}0, & m \neq n \\ \frac{2}{2 n+1}, & m=n\end{array}\right.$
b. Prove that

$$
\begin{equation*}
J_{4}(n)=\left(\frac{48}{x^{3}}-\frac{8}{x}\right) J_{1}(n)+\left(1-\frac{24}{x^{2}}\right) J_{0}(n) \tag{8}
\end{equation*}
$$

Q. 9 (For Current Scheme students i.e. AE51/AC51/AT51)
a. Solve the differential equation $(1+x+y)^{2} \frac{d y}{d x}=1$
b. Find the orthogonal trajectories of family of circles $x^{2}+y^{2}=2 a x$
Q. 9 (For New Scheme students i.e. AE101/AC101/AT101)
a. Find a Fourier Series to represent $x^{2}$ in the interval $(-\ell, \ell)$
b. Find the Fourier Cosine transform of $e^{-x^{2}}$.

