Code: AE51/AC51/AT51/ Subject: ENGINEERING MATHEMATICS - I AE101/AC101/AT101

AMIETE – ET/CS/IT (Current & New Scheme)

Time: 3 Hours

JUNE 2015

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Q2 TO Q8 CAN BE ATTEMPTED BY BOTH CURRENT AND NEW SCHEME STUDENTS.
- Q9 HAS BEEN GIVEN INTERNAL OPTION FOR CURRENT SCHEME (CODE AE51/AC51/AT51) AND NEW SCHEME (CODE AE101/AC101/AT101) STUDENTS.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a.	If $x = r \cos\theta$ and $y = r \sin\theta$, then	$\frac{\partial(\mathbf{x},\mathbf{y})}{\partial(\mathbf{r},\theta)}$ is equal to
	(A) r	(B) θ
	(C) $\mathbf{r} + \mathbf{\theta}$	(D) r - θ

b. The value of the double integral
$$\int_{0}^{1} \int_{x^2}^{2-x} (xy) dxdy$$
 is

(A)
$$\frac{3}{4}$$
 (B) $\frac{3}{8}$
(C) $\frac{3}{16}$ (D) 3

c. The matrix
$$\begin{bmatrix} 3-x & 2 & 2\\ 2 & 4-x & 1\\ -2 & -4 & -1-x \end{bmatrix}$$
 is singular if x is equal to
(A) (3, 1)
(C) (0, 3) (B) (1, 2)
(D) (2, 3)

1

Code: AE51/AC51/AT51/ Subject: ENGINEERING MATHEMATICS - I AE101/AC101/AT101

d.	Taylor's series solution of $\frac{dy}{dx} = -xy$	$y, y(0) = 1, upto x^4 is$
	(A) $y(x) = 1 + \frac{x^2}{2} + \frac{x^4}{8} + \dots$	(B) $y(x) = 1 - \frac{x^2}{2} - \frac{x^4}{8} - \dots$
	(C) $y(x) = 1 + \frac{1}{2} - \frac{1}{8} + \dots$	(D) $y(x) = 1 - \frac{1}{2} + \frac{1}{8} - \frac{1}{8}$
e.	If $z = \log(x^2 + xy + y^2)$, then $x\frac{\partial z}{\partial x} + y$	$\frac{\partial z}{\partial y}$ is equal to
	 (A) 0 (C) 2 	 (B) 1 (D) z
f.	The solution of $\frac{d^2y}{dx^2} + 3a\frac{dy}{dx} - 4a^2y$	= 0 is
	(A) $y=C_1e^{-ax}+C_2e^{-4ax}$	(B) $y=C_1e^{ax}+C_2e^{4ax}$
	(C) $y=C_1e^{ax}+C_2e^{-4ax}$	(D) $y=C_1e^{-ax}+C_2e^{4ax}$
g.	The value of the integral $\int_{0}^{\pi/2} \sin^5 x \cos^5 x \cos^$	3^3 xdx is equal to
	(A) $\frac{3}{8}$	(B) $\frac{1}{8}$
	(C) $\frac{1}{18}$	(D) $\frac{1}{24}$
h.	If $P_3(x) = \frac{1}{2}(ax^3 + bx)$, then	
	(A) x J ₀ (x) (C) -x J ₀ (x)	(B) $x J_2(x)$ (D) - $x J_2(x)$
i.	$J_{1/2}(x)$ is equal to	
	(A) $a = -3, b = 5$	(B) a = 5, b = -3
	(C) a = -3, b = -5	(D) $a = 5, b = 2$

ROLL NO.

Code: AE51/AC51/AT51/ Subject: ENGINEERING MATHEMATICS - I AE101/AC101/AT101

j.	If the product of two eigen values	of matrix	6 -2 2	-2 3 -1	2 -1 3	is 16, then the third	
	eigen value is				_		
	(A) 1 (C) 3	(B) 2 (D) 6					
		(_) 0					

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. If u = f(x, y), where $x = \Phi(t)$ and $y = \phi(t)$, show that $\frac{du}{dt} = \frac{\partial u}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dt}$ (8)

b. Expand f(x, y) = sin(xy) in powers of (x-1) and $\left(y - \frac{\pi}{2}\right)up$ to the second degree terms. (8)

Q.3 a. Change the order of integration and then evaluate $\int_{0}^{\infty} \int_{0}^{x} x e^{-\frac{x^2}{y}} dy dx$ (8)

b. Find the volume enclosed by the cylinders $x^2+y^2 = 2ax$ and $z^2 = 2ax$ (8)

- Q.4 a. Show that the equations 3x + 3y + 2z = 1, x + 2y = 4, 10y + 3z = -2, 2x 3y z = 5 are consistent and solve them. (8)
 - b. Find the eigen values and eigen vectors of the matrix. (8)

Q.5 a. Solve the differential equation
$$\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + \frac{dy}{dx} = e^{2x} + \sin 2x$$
 (8)

b. Solve the differential equation
$$(1+x)^2 \frac{d^2y}{dx^2} + (1+x)\frac{dy}{dx} + y = 4\cos\{\log(1+x)\}$$

(8)

Code: AE51/AC51/AT51/ Subject: ENGINEERING MATHEMATICS - I AE101/AC101/AT101

- Q.6 a. Use the method of false position to find the fourth root of 32 correct to three decimal places.(8)
 - b. Apply Euler's method to solve for y at x = 0.1 from $\frac{dy}{dx} = x + y + xy$, y(0) = 1taking step size h = 0.025 (8)

Q.7 a. Obtain the series solution of
$$\frac{d^2y}{dx^2} + x^2y = 0$$
 (8)

b. Show that $\int_{a}^{b} (x-a)^{m} (b-x)^{n} dx = (b-a)^{m+n+1} \beta(m+1, n+1)$ (8)

Q.8 a. Prove that
$$\int_{-1}^{1} P_m(n) P_n(n) dx = \begin{cases} 0, & m \neq n \\ \frac{2}{2n+1}, & m = n \end{cases}$$
 (4+4)

b. Prove that

$$J_4(n) = \left(\frac{48}{x^3} - \frac{8}{x}\right) J_1(n) + \left(1 - \frac{24}{x^2}\right) J_0(n)$$
(8)

Q.9 (For Current Scheme students i.e. AE51/AC51/AT51)

a. Solve the differential equation
$$(1 + x + y)^2 \frac{dy}{dx} = 1$$
 (8)

b. Find the orthogonal trajectories of family of circles
$$x^2 + y^2 = 2ax$$
 (8)

Q.9 (For New Scheme students i.e. AE101/AC101/AT101)

- a. Find a Fourier Series to represent x^2 in the interval $(-\ell, \ell)$ (8)
- b. Find the Fourier Cosine transform of e^{-x^2} . (8)