ROLL NO.

Code: AC65

Subject: DISCRETE STRUCTURES

AMIETE – CS (Current Scheme)

Time: 3 Hours

JUNE 2015

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

- a. Which of the following statement is the negation of the statement, "2 is even and -3 is negative"?
 - (A) 2 is even and -3 is not negative
 - (B) 2 is odd and -3 is not negative
 - (C) 2 is even or -3 is not negative
 - **(D)** 2 is odd or -3 is not negative
- b. Let $N = \{1, 2, 3, \dots \}$ be ordered by divisibility, which of the following subset is totally ordered

(A) (2, 6, 24)	(B) (3, 5, 15)
(C) (2, 9, 16)	(D) (4, 15, 30)

c. If R is a relation "Less Than" from A = $\{1, 2, 3, 4\}$ to B = $\{1, 3, 5\}$ then RoR⁻¹ is

$(\mathbf{A}) \{ (3,3), (3,4), (3,5) \}$	(B) {(3,1),(5,1),(3,2),(5,2),(5,3),(5,4)}
$(\mathbf{C}) \{ (3,3), (3,5), (5,3)(5,5) \}$	(D) { $(1,3),(1,5),(2,3),(2,5),(3,5),(4,5)$ }

d. Seven (distinct) car accidents occurred in a week. What is the probability that they all occurred on the same day?

(A) 1 / 7^6	(B) 1/2^7
(C) 1/7^5	(D) 1/7^7

e. If $A \times B = B \times A$, (where A and B are general matrices) then

$(\mathbf{A}) \mathbf{A} = \boldsymbol{\varphi}$	$(\mathbf{B}) \mathbf{A} = \mathbf{B'}$
$(\mathbf{C}) \mathbf{B} = \mathbf{A}$	$(\mathbf{D}) \mathbf{A}' = \mathbf{B}$

f. The length of Hamiltonian path in a connected graph of n vertices is

(A)	n-1	(B)	n
(C)	n+1	(D)	n/2

Code: AC65

Subject: DISCRETE STRUCTURES

g. Which of the following proposition is a tautology?

$(\mathbf{A}) \ (\mathbf{p} \lor \mathbf{q}) \to \mathbf{p}$	(B) $p \lor (q \rightarrow p)$
(C) $p \lor (p \rightarrow q)$	(D) $p \rightarrow (p \rightarrow q)$

h. Find the number of relations from $A = \{cat, dog, rat\}$ to $B = \{male, female\}$

(A) 64	(B) 6
(C) 32	(D) 15

i. Let P(S) denotes the power set of set S. Which of the following is always true?

$(\mathbf{A}) \mathbf{P}(\mathbf{P}(\mathbf{S})) = \mathbf{P}(\mathbf{S})$	(B) $P(S)$ intersection $S = P(S)$
(C) P(S) intersection P(P(S)) = { ϕ }	$(\mathbf{D}) \mathbf{S} \in \mathbf{P}(\mathbf{S})$

j. If G is an undirected planner graph on n vertices with e edges then?

$(\mathbf{A}) \mathbf{e} <= \mathbf{n}$	(B) e<= 2n
(C) e<= 3n	(D) none of these

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	Check the validity of the following argument:- "If the labour market is perfect then the wages of all persons in a particle employment will be equal. But it is always the case that wages for s persons are not equal therefore the labour market is not perfect."	(8) ular such
	b.	Let L be a distributive lattice. Show that if there exists an a with $a \land x = a \land y$ and $a \lor x = a \lor y$, then $x = y$.	(8)
Q.3	a.	Solve the recurrence relation T(k) = 2 T (k-1), T(0) = 1	(8)
	b.	What are the different types of quantifiers? Explain in brief. Show that $(\exists x)(P(x) \land Q(x)) \Longrightarrow (\exists x)P(x) \land (\exists x)Q(x)$	(8)
Q.4	a.	If f is a homomorphism from a commutative semigroup $(S,*)$ onto a semigr $(T, *')$, then show that $(T, *')$ is also commutative.	oup (8)
	b.	How many words of 4 letters can be formed with the letters a, b, c, d, e, and h, when (i) e and f are not to be included (ii) e and f are to be included	f, g (8)
Q.5	a.	Let x be the set of all programs of a given programming language. Let R the relation on x defined as P1 R P2 if P1 and P2 give the same output on all the inputs for which they terminate. Is R an equivalence relation? If not which property fails?	e e (8)
	b.	Prove that for every positive integer n, $n^3 - n$ is divisible by 3.	(8)

ROLL NO.

Code: AC65

Subject: DISCRETE STRUCTURES

Q.6 a. What are tautologies and contradiction? Prove that, for any propositions P, Q, R the following compound propositions are tautologies:

(i)
$$[(P \to Q) \land (P \to R)] \to (P \to R)$$

(ii) $[P \to (Q \to R)] \to [(P \to Q) \to (P \to R)]$ (8)

- b. Show that $S \lor R$ is tautologically implied by $(P \lor Q) \land (P \to R) \land (Q \to S)$. (8)
- Q.7 a. Consider the function $f : N \to N$, where N is the set of natural numbers, defined by $f(n) = n^2 + n + 1$. Show that the function f is one-one but not onto. (8)
 - b. Using principles of inclusion and exclusion determine the number of integers between 1 and 250 that are divisible by any of the integers 2, 3, 5 or 7. (8)
- **Q.8** a. Find the orders of the groups $U(Z_{10})$, $U(Z_{11})$, and $U(Z_{12})$, and describe their structure. (8)
 - b. By finding a suitable generator, show that the multiplicative group of the field Z_{23} is cyclic. (8)
- **Q.9** a. Let G be the set of real numbers not equal to -1 and * be defined by a*b = a + b + ab. Prove that (G, *) is an abelian group. (8)
 - b. Prove that $A \cup B = (A B) \cup (B A) \cup (A \cap B)$ (8)

3