\qquad

AMIETE - CS (Current Scheme)

Time: 3 Hours
JUNE 2015
Max. Marks: 100

please write your roll no. at the space provided on each page IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. Which of the following statement is the negation of the statement, " 2 is even and -3 is negative"?
(A) 2 is even and -3 is not negative
(B) 2 is odd and -3 is not negative
(C) 2 is even or -3 is not negative
(D) 2 is odd or -3 is not negative
b. Let $\mathrm{N}=\{1,2,3, \ldots . . .$.$\} be ordered by divisibility, which of the following$ subset is totally ordered
(A) $(2,6,24)$
(B) $(3,5,15)$
(C) $(2,9,16)$
(D) $(4,15,30)$
c. If R is a relation "Less Than" from $A=\{1,2,3,4\}$ to $B=\{1,3,5\}$ then RoR^{-1} is
(A) $\{(3,3),(3,4),(3,5)\}$
(B) $\{(3,1),(5,1),(3,2),(5,2),(5,3),(5,4)\}$
(C) $\{(3,3),(3,5),(5,3)(5,5)\}$
(D) $\{(1,3),(1,5),(2,3),(2,5),(3,5),(4,5)\}$
d. Seven (distinct) car accidents occurred in a week. What is the probability that they all occurred on the same day?
(A) $1 / 7 \wedge 6$
(B) $1 / 2 \wedge 7$
(C) $1 / 7 \wedge 5$
(D) $1 / 7 \wedge 7$
e. If $\mathrm{A} \times \mathrm{B}=\mathrm{B} \times \mathrm{A}$, (where A and B are general matrices) then
(A) $\mathrm{A}=\varphi$
(B) $\mathrm{A}=\mathrm{B}$ '
(C) $B=A$
(D) $\mathrm{A}^{\prime}=\mathrm{B}$
f. The length of Hamiltonian path in a connected graph of n vertices is
(A) $\mathrm{n}-1$
(B) n
(C) $\mathrm{n}+1$
(D) $n / 2$
g. Which of the following proposition is a tautology?
(A) $(p \vee q) \rightarrow p$
(B) $\mathrm{p} \vee(\mathrm{q} \rightarrow \mathrm{p})$
(C) $\mathrm{p} \vee(\mathrm{p} \rightarrow \mathrm{q})$
(D) $\mathrm{p} \rightarrow(\mathrm{p} \rightarrow \mathrm{q})$
h. Find the number of relations from $A=\{$ cat, dog, rat $\}$ to $B=\{$ male, female $\}$
(A) 64
(B) 6
(C) 32
(D) 15
i. Let $\mathrm{P}(\mathrm{S})$ denotes the power set of set S . Which of the following is always true?
(A) $\mathrm{P}(\mathrm{P}(\mathrm{S}))=\mathrm{P}(\mathrm{S})$
(B) $\mathrm{P}(\mathrm{S})$ intersection $\mathrm{S}=\mathrm{P}(\mathrm{S})$
(C) $\mathrm{P}(\mathrm{S})$ intersection $\mathrm{P}(\mathrm{P}(\mathrm{S}))=\{\phi\}$
(D) $S \in P(S)$
j. If G is an undirected planner graph on n vertices with e edges then?
(A) $\mathrm{e}<=\mathrm{n}$
(B) $e<=2 n$
(C) $e<=3 n$
(D) none of these

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. Check the validity of the following argument:-
"If the labour market is perfect then the wages of all persons in a particular employment will be equal. But it is always the case that wages for such persons are not equal therefore the labour market is not perfect."
b. Let L be a distributive lattice. Show that if there exists an a with
$a \wedge x=a \wedge y$ and $a \vee x=a \vee y$, then $x=y$.
Q. 3 a. Solve the recurrence relation
$\mathrm{T}(\mathrm{k})=2 \mathrm{~T}(\mathrm{k}-1), \mathrm{T}(0)=1$
b. What are the different types of quantifiers? Explain in brief.

Show that $(\exists x)(P(x) \wedge Q(x))=>(\exists x) P(x) \wedge(\exists x) Q(x)$
Q. 4 a. If f is a homomorphism from a commutative semigroup ($\mathrm{S} \mathrm{S}^{*}$) onto a semigroup

b. How many words of 4 letters can be formed with the letters a, b, c, d, e, f, g and h, when
(i) e and f are not to be included
(ii) e and f are to be included
Q. 5 a. Let x be the set of all programs of a given programming language. Let R the relation on x defined as P1 R P2 if P1 and P2 give the same output on all the inputs for which they terminate. Is R an equivalence relation? If not which property fails?
b. Prove that for every positive integer $n, \mathrm{n}^{3}-\mathrm{n}$ is divisible by 3 .
Q. 6 a. What are tautologies and contradiction? Prove that, for any propositions P, Q, R the following compound propositions are tautologies:
(i) $[(\mathrm{P} \rightarrow \mathrm{Q}) \wedge(\mathrm{P} \rightarrow \mathrm{R})] \rightarrow(\mathrm{P} \rightarrow \mathrm{R})$
(ii) $[\mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{R})] \rightarrow[(\mathrm{P} \rightarrow \mathrm{Q}) \rightarrow(\mathrm{P} \rightarrow \mathrm{R})]$
b. Show that $S \vee R$ is tautologically implied by $(P \vee Q) \wedge(P \rightarrow R) \wedge(Q \rightarrow S)$.
Q. 7 a. Consider the function $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$, where N is the set of natural numbers, defined by $f(n)=n^{2}+n+1$. Show that the function f is one-one but not onto.
b. Using principles of inclusion and exclusion determine the number of integers between 1 and 250 that are divisible by any of the integers $2,3,5$ or 7 .
Q. 8 a. Find the orders of the groups $\mathrm{U}\left(\mathrm{Z}_{10}\right), \mathrm{U}\left(\mathrm{Z}_{11}\right)$, and $\mathrm{U}\left(\mathrm{Z}_{12}\right)$, and describe their structure.
b. By finding a suitable generator, show that the multiplicative group of the field Z_{23} is cyclic.
(8)
Q. 9 a. Let G be the set of real numbers not equal to -1 and * be defined by a*b $=\mathrm{a}+$ $\mathrm{b}+\mathrm{ab}$. Prove that ($\mathrm{G},{ }^{*}$) is an abelian group.
b. Prove that $\mathrm{A} \cup \mathrm{B}=(\mathrm{A}-\mathrm{B}) \cup(\mathrm{B}-\mathrm{A}) \cup(\mathrm{A} \cap \mathrm{B})$

