Code: AC104/AT104 Subject: DATA STRUCTURES WITH C & C++

AMIETE - CS/IT {NEW SCHEME}

Time: 3 Hours JUNE 2015 Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

Q.1	Choose the correct or the best alternative in the following:				
	a. Theis a technique				
	(A) Binary Search(C) Tree Search	(B) Linear Search(D) Hashing			
	b. The smallest element of an array's index is called its				
	(A) Lower bound(C) Range	(B) Upper bound(D) Extraction			
	c. One can convert a binary tree into its mirror image by traversing it in				
	(A) Inorder(C) Postorder	(B) Preorder(D) Any order			
	d. The complete binary tree at k-depth has leaf nodes.				
	(A) 2^k (C) $2^{k+1}+1$	(B) 2^{k-1} -1 (D) 2^{k+1}			
	e. Data structure representation in memory is known as				
	(A) Recursive(C) Storage structure	(B) Abstract data type(D) File structure			
	f. Which of the following technique is appropriate for the Merge sort?				
	(A) Divide and conquer strateg(C) Backtracking approach	y (B) Heuristic search (D) Greedy approach			

ROLL NO.	

Code: AC104/AT104 Subject: DATA STRUCTURES WITH C & C++

g.	The postfix	k form	of the	A+B*C is
----	-------------	--------	--------	----------

(A) ABC+*

(B) ABC*+

(C) AB+C*

- **(D)** AB*C+
- h. Which of the following operation is performed more efficiently by doubly linked list as compared to singly linked list is?
 - (A) Inverting a node after the node with given location
 - **(B)** Searching of an unsorted list for a given item
 - **(C)** Deleting a node whose location in given
 - (**D**) Traversing a list to process each node
- i. The result of the following operation Top (Push (S, X)) is:
 - (A) X

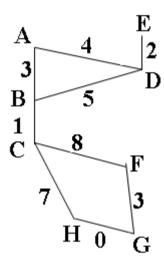
(B) Null

(C) S

- (**D**) None of these
- j. If an algorithm is composite of two independent time complexities f(n) and g(n). Then the complexities of the algorithm is in the order of
 - (A) f(n) x g(n)

- **(B)** Max (f(n), g(n))
- (C) Min(f(n), g(n))
- **(D)** f(n) + g(n)

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.


- Q.2 a. What is meant by an Abstract data type (ADT)? Explain generic ADT and how it is different from ADT. (4+4)
 - b. What do you understand by the complexity of an algorithm? Explain relation between the time and space complexities of an algorithm. (4+4)
- Q.3 a. Describe the stack data structure. Also mention the limitations of using array for Stack implementation.(6)
 - b. Using an appropriate example, explain the use of stack in Recursion. (4)
 - c. Describe the Queue representation and implementation using suitable examples. (6)
- Q.4 a. Write down a function to merge two linked lists containing same type of information in ascending order into a sorted single linked list. (6)
 - b. Write a C program to perform the creation of circular linked list. (4)
 - c. Assume the linked list in the memory consisting of numerical values. Give a Program segment for the following:
 - (i) Find the maximum "MAX" of the values in the Linked list.
 - (ii) Find the average "MEAN" of the values in the Linked list.

(6)

ROLL	NO.	

Code: AC104/AT104 Subject: DATA STRUCTURES WITH C & C++

- Q.5 a. What is threaded binary tree? How does Threaded binary tree represented in Data Structure? (3+4)
 - b. Define Binary Search Tree (BST) with its essential properties. Generate a Binary Search Tree for the given series of numbers 46, 37, 80, 22, 92, 122, 102, 40, 41, 60, 70, 50 (4+5)
- **Q.6** a. What do you mean by Minimum Spanning Tree (MST) of a graph? Write the Kruskal's algorithm and apply it on the following graph to find the MST: (10)

- b. Discuss the different graph traversal techniques in detail. Also list their advantages & disadvantages. (6)
- Q.7 a. Describe Hashing and Hash function. What are problems in hashing? (4+2)
 - b. Explain the different collision resolution techniques. (4)
 - c. Write an algorithm for binary search. List out the conditions under which linear search of a list is preferred over binary search. (4+2)
- Q.8 a. Consider a list which is already sorted, which sorting algorithm is performed best and why? Also State that algorithm.(4)
 - b. Explain Heap Sort algorithm. Sort the following sequence of numbers using heap sort algorithm:
 20, 12, 25 6, 10, 15, 13
 (6+6)
- Q.9 a. Explain Direct File organization. State advantages and disadvantages of this file organization. (2+6)
 - b. Give a Program code in C that copies the contents of one file into another file using command line arguments. (8)