ROLL NO.	

Code: AC103/AT103 Subject: ANALOG AND DIGITAL ELECTRONICS

AMIETE - CS/IT (New Scheme)

Time: 3 Hours JUNE 2015 Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.

a. With forward bias to a pn ju		(2×10)								
a. With forward bias to a pir ju										
(A) decreases(C) remains the same	(B) increases same (D) none of these									
b. The filter circu	nit results in the best voltage regulation.									
(A) choke input(C) resistance input	(B) capacitor input(D) none of these									
c. The emitter of a transistor is	c. The emitter of a transistor is doped.									
(A) lightly(C) moderately	(B) heavily(D) none of these									
d. In voltage divider bias, ope what is the value of R_E ?	$=2.2k\Omega$,									
(A) 2000 Ω (C) 800 Ω	(B) 1400 Ω (D) 1600 Ω									
e. Negative feedback is emplo	yed in									
(A) oscillators(C) amplifiers	(B) rectifiers(D) none of these									
f. The Gray code for decimal										
(A) 1100 (C) 0101	(B) 1001 (D) 0110									
g. What is the binary equivale	g. What is the binary equivalent of the decimal number 368?									
(A) 101110000 (C) 111010000	(B) 110110000 (D) 111100000									

ROLL NO.	

Code: AC103/AT103 Subject: ANALOG AND DIGITAL ELECTRONICS

h.	The output	of a	logic	gate	is	1	when	all	its	inputs	are	at	logic	0.	The	gate	is
	either																

- (A) a NAND or an EX-OR
- (B) an OR or an EX-NOR
- (C) an AND or an EX-OR
- (**D**) a NOR or an EX-NOR
- i. The 2's complement of the number 1101101 is
 - **(A)** 0101110

(B) 0111110

(C) 0110010

- **(D)** 0010011
- j. Data can be changed from special code to temporal code by using
 - (A) Shift registers

- **(B)** counters
- (C) Combinational circuits
- (D) A/D converters

PART (A)

Answer at least TWO questions. Each question carries 16 marks.

- Q.2 a. Draw and explain the V-I characteristics (forward and reverse biasing) of a pn junction. (8)
 - b. Draw and explain the I-V characteristics of a Zener diode. What are the two breakdown mechanisms in a Zener diode? (8)
- Q.3 a. A full-wave rectifier with a center-tapped transformer supplies a dc current of 100mA to a load resistance of R=20Ω. The secondary resistance of the transformer is 1Ω. Each diode has a forward resistance of 0.5Ω. Determine the following:
 - (i) RMS Value of the signal voltage across each half of the secondary.
 - (ii) DC power supplied to the load.
 - (iii) PIV rating for each diode.
 - (iv) AC power input to the rectifier.
 - (v) Conversion efficiency

(8)

- b. Draw the positive and negative voltage clipper circuits. Explain its working along with the waveforms. (8)
- **Q.4** a. Explain the operation of NPN transistor with neat diagrams.
- (8)
- b. Fig.1 shows the voltage divider bias method. Draw the DC load line and determine the operating point. Assume transistor to be Silicon. (8)

Code: AC103/AT103 Subject: ANALOG AND DIGITAL ELECTRONICS

- Q.5 a. Draw the circuit of single stage CE amplifier and explain the function of bypass capacitor and coupling capacitors.(8)
 - b. Explain the working of Hartley oscillator with a neat circuit diagram. (8)

PART (B) Answer at least TWO questions. Each question carries 16 marks.

- Q.6 a. Explain the parallel and serial transmission of information in digital systems.(8)
 - b. What is the need for error detection and correction codes? Explain the parity method for error detection. (8)
- Q.7 a. Prove the following identities using Boolean algebra:

 (i) $(A+B)(A+\overline{AB})C + \overline{A}(B+\overline{C}) + \overline{A}B + ABC = C(A+B) + \overline{A}(B+\overline{C})$ (ii) $\overline{A(\overline{A \cdot B})} \cdot \overline{B(\overline{A \cdot B})} = A \oplus B$
 - b. Reduce the following equation using k-map Y = ABC + ACD + AB + ABCD + ABC (8)
- Q.8 a. Explain Full adder with an example. (8)
 - b. What is a decoder? Draw the logic circuit of a 3 line to 8 line decoder and explain its working. (8)
- Q.9 a. With relevant diagram explain the working of master-slave JK Flip-Flop. (8)
 - b. Draw the diagram of a 4-bit synchronous up Counter and explain its working along with the waveforms. (8)