ROLL NO.

Code: DE67 / DC67

Time: 3 Hours

Subject: EMBEDDED SYSTEMS

Diplete – Et/cs

JUNE 2014

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10)

a. Assembler is an

(A) Software	(B) Compiler
(C) Hardware	(D) All of these

- b. A driver controlling functions are
 - (A) Initializing, Run and Stop
 (B) Initialization, Calling ISR and Resetting the status flags
 (C) Start, Run, Stop and Resume
 (D) Both (A) & (B)
- c. The RTOS includes
 - (A) Device Drivers and a Device Manager
 (B) A part and Compiler
 (C) A part and Debugger
 (D) Both (A) and (B)

d. The CACHE is usually designed using SRAM rather than DRAM because

- (A) Cost
 (B) Performance
 (C) Appears on the same chip as a processor
 (D) Both (A) and (B)
- e. A program that runs on one processor and executes the instructions of another processor is called

(A) Distributed processor	(B) Single-purpose processor
(C) Instruction-set Simulator	(D) All of these

Code: DE67 / DC67

Subject: EMBEDDED SYSTEMS

f. The Scheduling, Allocation and Binding are highly

(A) Interdependent	(B) Dependent
(C) Both (A) and (B)	(D) None of these

g. The advantages of Mask – Programmed ROM are

(A) Density	(B) Speed
(C) Low Write Ability	(D) All of these

h. In a fixed priority arbitration, each peripheral has a

(A) Unique Rank	(B) Set of Ranks
(C) Low ranked	(D) High ranked

i. A LCD driver function is

(A) To excite the LCD dots	(B) To excite the LCD characters
(C) To manage LCD action	(D) None of these

j. Components that are commonly used in embedded software

(A) The State Machine	
(C) The Queue	

(B) The Circular Buffer(D) All of these

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	Define Embedded System. Explain the performance design metric of an embedded system. (8)
	b.	Compare Full Custom Design, Semi Custom Design and PLDs. (8)
Q.3	a.	What is the use of RTL components in combinational circuits? Explain important RTL components which are used in combinational circuits design. (8)
	b.	Define Optimization. Explain optimization opportunities in a single-purpose processor. (8)
Q.4	a.	Define ASIP. Explain how it is different from general-purpose processors with one example. (8)
	b.	Discuss the technical aspects of selecting a microprocessor for use in an

b. Discuss the technical aspects of selecting a microprocessor for use in an embedded system. (8)

ROLL NO. _

Code:	DF	E67 / DC67 Subject: EMBEDDED SYSTEMS
Q.5	a.	What is a timer? How does a counter perform:(i) Timer function(ii) Prefixed time initiated event generation(iii) Time capture function(8)
	b.	A watchdog timer uses two cascaded 16 bit up-counter is connected to an 11.981 MHz oscillator. A time out should occur if the function watch reset is not called within 5 minutes. What value should be loaded into the up counter pair when the function is called? (8)
Q.6	a.	Discuss all the steps used in peripheral to memory transfer without DMA, using vectored interrupt. (6)
	b.	Draw the block diagram of memory hierarchy structure used in an embedded system. (10)
Q.7	a.	Explain the function of scheduler in detail. (8)
	b.	Explain Daisy Chain arbitration and Network oriented arbitration. (8)
Q.8	a.	Explain the Process and Task concepts in RTOS. (8)
	b.	Explain in brief, comparison of the methods for Inter-task communication. (8)
Q.9	a.	Draw the software architecture of an automatic chocolate vending machine (ACVM). (8)

b. Draw and explain state diagram for ACVM tasks. (8)