ROLL NO.

Code: DE63

Time: 3 Hours

Subject: DIGITAL COMMUNICATIONS

Diplete – Et

JUNE 2014

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. In an S/H circuit, the time that it must hold the sampled voltage is.

(A) Aperture time	(B) Acquisition time
(C) Flat-top time	(D) D _{min}

b. The quantizing error of PCM systems for weak signals can be made less significant by

(A) Companding	(B) Using time-division multiplexing
(C) frequency-division multiplexing	(D) Filtering out the alias frequency

c. Error signals associated with the sampling process are called

(A) Foldover distortion	(B) Aliasing
(C) Nyquist rate	(D) Foldover distortion and aliasing

d. The advantage(s) of digital and/or data communications over analog include

(A) Noise performance	(B) Regeneration
(C) Digital signal processing	(D) All the above

e. Using an oscilloscope to display overlayed received data bits that provide information on noise, jitter, and linearity is called a(n)

(A) Eye pattern	(B) Constellation pattern
(C) Statistical concentration	(D) Loopback

Subject: DIGITAL COMMUNICATIONS

- f. A special digital modulation technique that achieves high data rates in limitedbandwidth channels is called
 - (A) Delta modulation
 - (**B**) Pulse-coded modulation (PCM)
 - (C) Quadrature amplitude modulation (QAM)
 - **(D)** Pulse amplitude modulation (PAM)
- g. The distortion caused by lengthening the samples is referred to as

(A) Aperture effect	(B) Aliasing effect
(C) Fold over effect	(D) Sampling

h. The major difficulty faced by delta modulators is

- (A) Excessive noise producing errors
 (B) Slope overload
 (C) Insufficient frequency response of the intelligence signal
 (D) Complexity of design
- i. The capacity of a telephone channel that has an S/N of 2047 if its bandwidth is 3.5 kHz is

(A) 30,000 bits per second	(B) 33,000 bits per second
(C) 38,500 bits per second	(D) 35,000 bits per second

- j. PPM and PWM are superior to PAM systems in
 - (A) Noise characteristics
 - (B) Bandwidth characteristics
 - (**C**) Simplicity in design
 - (D) Frequency response of the intelligence signal

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- **Q.2** a. An ensemble (A, z) is given where A={'000', '001', '010', '011', '100'} and z = $[0.5 \ 0.22 \ 0.2 \ 0.05 \ 0.03]^{T}$ is given. Find the code-length per symbol before and after Huffman coding. (8)
 - b. What are the advantages of Digital Communication? (4)
 - c. Consider a discrete memory less source with source alphabets $S = \{ s_0, s_1, s_2 \}$ with probabilities $p(s_0) = 1/4$, $p(s_1) = 1/4$, $p(s_2) = \frac{1}{2}$. Calculate the entropy of the source. (4)
- Q.3 a. Draw Block diagram of PAM-TDM (pulse amplitude modulation-time division multiplexing) and explain the process in detail.(8)

Subject: DIGITAL COMMUNICATIONS

- b. Explain Flat top sampling process in detail. Why amplitude and delay distortion occurs in flat top sampling. How it can be corrected. (8)
- Q.4 a. Explain in detail Differential pulse code modulation (DPCM) with the help of neat block diagram. (8)
 - b. What is the need of Robust Quantisation? Explain the model of Robust Quantisation. (8)
- Q.5 a. Write a short note on adaptive equalization for data transmission. (8)
 - b. What is Inter symbol interference? Explain its effects and methods to reduce it. (8)
- Q.6 a. Draw and explain the transmitter and receiver section of differential phase shift keying.(8)
 - b. Compare Binary and Quaternary modulation techniques. (8)
- **Q.7** a. The received signal in a binary communication system that employs antipodal signals is r(t) = s(t) + n(t), where s(t) is shown in the figure below and n(t) is AWGN with power spectral density $N_0/2$ W/Hz.

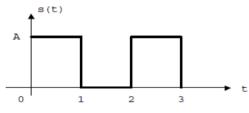


Fig.1

Obtain the impulse response and output of the matched filter matched to s(t)

(8)

- b. What is matched filter receiver? (4)
 c. Write a note on correlation receiver. (4)
 Q.8 a. Explain Direct Sequence Spread Coherent Binary PSK. (8)
 b. Define spread spectrum and enlist the properties of maximum length sequences. (8)
- Q.9 Write Short note on: (i) Code division multiple Access (CDMA) (ii) Digital Radio (2×8)