ROLL NO. __

Code: DE61

Time: 3 Hours

Subject: ANALOG COMMUNICATIONS

Diplete – Et

JUNE 2014

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. Thermal noise is proportional to _____

(A) $\sqrt{\beta}$	(B) β
(C) β^2	(D) β^3
Where β is bandwidth in Hz	

b. In AM, the modulation envelope has a peak value double the unmodulated carrier level when modulation is ______

(A) 25 %	(B) 33 %
(C) 50 %	(D) 100 %

c. In Phase modulation, the modulation index is proportional to ______

(A) signal strength	(B) carrier voltage
(C) carrier frequency	(D) modulating frequency

d. The emphasis circuits are used for improving S/N ratio at _____

(A) lower frequency	(B) middle frequency
(C) higher frequency	(D) complete frequency

e. A half wave dipole used at a frequency of 300 MHz has a length of

(A) 10 meters	(B) 3 meters
(C) 1 meter	(D) 50 centimeters

f. Type of fading which causes serious distortion of modulation is _____

(A) selective fading	(B) interference fading
(C) absorption fading	(D) polarization fading

(

ROLL NO. _____

				-
(Cod	e: DE61 Su	bject: ANALOG COMMUNICATIO	NS
	g.	The most often used modes in	circular guides are the	
		(A) TE ₁₁ and TE ₁₀ (C) TE ₁₀ and TM ₁₀	(B) TE ₀₁ and TM ₀₁ (D) None of these	
	h.	In PM, without any modula	tion, all the transmitted pulses have the same	me
		(A) amplitude(C) amplitude and spacing	(B) width(D) amplitude , spacing and width	
	i.	The pilot carrier in SSB is used	d for	
		(A) better noise immunity(C) lower power consumption	(B) frequency stability response(D) none of these	
	j.	Bandwidth (ω_m) for an AM w	vave is	
		(A) 2ω _m	(B) ω _m	
		(C) $\frac{\omega_{\rm m}}{2}$	(D) $4 \omega_{\rm m}$	
		• -	stions out of EIGHT Questions. on carries 16 marks.	
Q.2	a.	What is modulation? Explain	the need of it. ((6)
	b.	Determine (i) Noise figure for an equiva (ii) Equivalent noise temperat Use 290K for reference tempe		(6)
	c.	-	odulated signal? Why is it a significant factor?	
Q.3	a.	Compare various amplitude m	nodulation system on the basis of practical mer	
	(6) b. The a.c. r.m.s. antenna current of an AM transmitter is 6.2 A when unmodulated and rises to 6.7 A when modulated. Calculate the percentage of modulation. (6)		hen e of	
	c.	Describe independent side ba	and (ISB) system in brief.	(4)
Q.4	a.	Explain the operation of generation with the help of a net of a ne		FM (8)
	b.	VHF band with the maxim frequency of 100 Hz. The pri- phase modulation deviation	to be used for transmission at 152 MHz in a um deviation of 15 kHz at a minimum aud mary oscillator is to be at 100 kHz and the init is to be kept to less than 12^{0} , to avoid aud ant by which the frequency must be multiplied	dio tial dio

Code: DE61

Subject: ANALOG COMMUNICATIONS

give proper deviation and (ii) specify the combination of doublers and triplers, mixers crystal and any multiplier stages needed. (8)

- Q.5 a. With the help of a neat block diagram, explain the functioning of a broadcast FM receiver. (8)
 - b. The Pre-emphasis and De-emphasis used in other part of world are not necessarily 75 μ s. Suppose that a 50 μ s time constant is used, what is the necessary of -3db frequency? What resistance value can be used if the capacitor of the 75 μ s pre-emphasis in the system is retained? Draw the RC circuit for Pre-emphasis and De-emphasis. (8)
- Q.6 a. How do directors and reflector affect the radiation pattern of an antenna structure? (7)
 - b. Design a Marconi antenna for a frequency of 3 MHz: (5)
 - c. What is directivity? What factors affect the directional pattern of antenna? (4)
- Q.7 a. Explain "skip-distance" and "skip-zone" with the help of suitable diagram. (7)
 - b. Justify that a TEM wave cannot propagate in a single conductor hollow waveguide. (5)
 - c. A rectangular waveguide is 1cm x 2cm in dimensions. Calculate λ_c for TE₁₀ and TM₁₁ modes. (4)

Q.8 a. Explain the sampling theorem for band pass signal. (8)

- b. A signal having bandwidth of 4.2 MHZ is transmitted using binary PCM system and the number of quantization levels is 512. Determine:
 - (i) code word length
 - (ii) transmission bandwidth
 - (iii) final bit rate

Q.9 Write short note on any <u>**TWO**</u> of the following: (2×8)

- (i) flat top sampling
- (ii) channel translating equipment
- (iii) satellite communication

(8)