\qquad

DipIETE - ET/CS

Time: 3 Hours

JUNE 2014

Max. Marks: 100

please write your roll no. at the space provided on each page IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. The number of bits in ASCII code is \qquad
(A) 12
(B) 9
(C) 10
(D) 7
b. The 8421 BCD equivalent of Hexadecimal number FF_{16} is \qquad
(A) 000001010101
(B) 001001010101
(C) 111101010101
(D) 100001010101
c. DeMorgan's second theorem is \qquad
(A) $A \cdot \bar{A}=0$
(B) $\overline{\bar{A}}=A$
(C) $\overline{A+B}=\overline{\mathrm{A}}+\overline{\mathrm{B}}$
(D) $\overline{A B}=\bar{A}+\bar{B}$
d. A Karnaugh map with 4 variables has \qquad
(A) 2 cells
(B) 8 cells
(C) 4 cells
(D) 16 cells
e. In a D latch \qquad
(A) data bit D is fed to S input and \bar{D} to R input
(B) data bit D is fed to R input and \bar{D} to S input
(C) data bit D is fed to R and S inputs
(D) data bit \bar{D} is not fed to any input
f. When two 4-bit parallel adders are cascaded we get \qquad
(A) 4-bit parallel adder
(B) 8-bit parallel adder
(C) 16-bit parallel adder
(D) 32-bit parallel adder
\qquad
g. A 4-bit down counter can count from \qquad
(A) 0000 to 1111
(B) 1111 to 0000
(C) 0101 to 1111
(D) 111 to 000
h. In a 7 segment display, LEDs a, b and c light up. The decimal number displayed is
\qquad
(A) 9
(B) 3
(C) 7
(D) 1
i. An 8 bit data is to be entered into a parallel in register. The number of clock pulses require is \qquad
(A) 8
(B) 2
(C) 4
(D) 1
j. The memory does not require programming equipment is \qquad
(A) RAM
(B) EEPROM
(C) EPROM
(D) UVPROM

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.
Q. 2 a. What is a Digital System? Explain the advantages and limitations of Digital Techniques over Analog Techniques.
b. Convert the decimal number 82.67 to its equivalent binary number.
Q. 3 a. Simplify the logic expression $\mathrm{F}=\overline{A B C}+\overline{A B} \mathrm{C}+\bar{A} \mathrm{~B} \bar{C}+\mathrm{A} \overline{B C}+\mathrm{A} \bar{B} \mathrm{C}$ using boolean algebraic theorems.
b. Draw the logic diagram for 4-bit Even Parity Generator and explain its operation.
c. Minimize the logic function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(1,3,5,8,9,11,15)+\mathrm{d}(2,13)$ using K-maps.
Q. 4 a. What is a Flip-Flop? Draw the logic diagram for Master Slave Flip-Flop and explain its function with the help of truth table.
b. Explain the application of Flip-Flop as a Shift Register using D Flip-Flops.
Q. 5 a. (i) Perform the Addition of -20 to +26 using 2's complement System.
(ii) Perform the Subtraction of 0011.1001- 0001.1110 using 2's Complement System.
(4+4)
\qquad
b. What is the need of Parallel Binary Adder? Draw the block diagram of four-bit Parallel Adder using Full Adders and explain its operation.
Q. 6 a. What is a Ripple Counter? Draw the logic diagram of 3-bit Ripple Counter and explain its working with the help of timing diagram.
(8)
b. What is Synchronous Counter? Draw the logic circuit of Mod-8 Synchronous Counter and explain its working with timing waveform.
Q. 7 a. What is Magnitude Comparator? Explain 2-bit Magnitude Comparator with the help of truth table.
b. What is an Encoder? Draw the truth table for 10 -line Decimal to 4 -line BCD Encoder and implement the logic diagram from the truth table.
Q. 8 a. Design a Mod-6 Synchronous Counter and draw its designed logic diagram(9)
b. Draw the logic diagram for 4-bit Serial Input and Serial Output Shift Register and explain its working with timing waveform.
Q. 9 a. Draw and explain the architecture of 16×8 ROM.
b. Differentiate between Static RAM and Dynamic RAM.

