ROLL NO. \_\_

Subject: NETWORKS AND TRANSMISSION LINES

## **Diplete – Et**

**Time: 3 Hours** 

# **JUNE 2014**

Max. Marks: 100

 $(2 \times 10)$ 

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
- Q.1 Choose the correct or the best alternative in the following:
  - a. An inductor stores the energy in the form of \_\_\_\_\_

| (A) electric field  | ( <b>B</b> ) magnetic field |
|---------------------|-----------------------------|
| (C) electric charge | <b>(D)</b> E.M.F.           |
|                     |                             |

b. Laplace transform of a unit impulse function is \_\_\_\_\_

| (A) 1/S | <b>(B)</b> 1/S <sup>2</sup> |
|---------|-----------------------------|
| (C) S   | <b>(D)</b> 1                |

c. In a network, to neglect a voltage source, the terminals across the source are

| (A) open circuited        | ( <b>B</b> ) short circuited                  |
|---------------------------|-----------------------------------------------|
| (C) replaced by capacitor | ( <b>D</b> ) replaced by very high resistance |

d. Z<sub>11</sub> in terms of transmission parameters is equal to \_\_\_\_\_

| (A)          | A/C | <b>(B)</b> 1/C   |
|--------------|-----|------------------|
| ( <b>C</b> ) | D/C | ( <b>D</b> ) C/A |

e. In a series R-L-C circuit, at resonant frequency the overall impedance of circuit is equal to \_\_\_\_\_

| (A) R        | ( <b>B</b> ) L    |
|--------------|-------------------|
| (C) infinite | ( <b>D</b> ) zero |

f. The loop inductance of a transmission line having distributed line constants is measured in \_\_\_\_\_

| (A) Henrys    | ( <b>B</b> ) Ohms |
|---------------|-------------------|
| (C) Henrys/km | <b>(D)</b> Ohm/km |

DE57 / JUNE - 2014

ROLL NO. \_

Subject: NETWORKS AND TRANSMISSION LINES

g. Input impedance of <sup>1</sup>/<sub>4</sub> wave length long short circuited lossless transmission line is \_\_\_\_\_\_

| (A) zero | <b>(B)</b> low      |
|----------|---------------------|
| (C) high | <b>(D)</b> infinite |

h. When condition is changed from transmission to attenuation, the frequency is called as \_\_\_\_\_\_ frequency.

| (A) resonant | <b>(B)</b> line        |
|--------------|------------------------|
| (C) cut off  | ( <b>D</b> ) bandwidth |

i. A circuit has Thevenin's voltage of 10V, Thevenin's resistance of  $2\Omega$  and load resistance of  $3\Omega$ , then its load voltage is \_\_\_\_\_

| (A) 3V          | <b>(B)</b> 5V    |
|-----------------|------------------|
| ( <b>C</b> ) 6V | ( <b>D</b> ) 10V |

j. A filter is a \_\_\_\_\_\_ selective network.

| (A) amplitude | ( <b>B</b> ) phase   |
|---------------|----------------------|
| (C) time      | <b>(D)</b> frequency |

#### Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- **Q.2** a. A capacitor of  $4\mu$ F capacitance is charged to a potential difference of 400V and then connected in parallel with an uncharged capacitor of 2  $\mu$ F capacitance. Calculate potential difference across the parallel capacitors. (8)
  - b. Differentiate between current source and voltage source. Draw and explain the characteristics of ideal and practical sources. (8)
- Q.3 a. Determine the laplace transform of the pulse shown in Fig.1. (8)



(8)

#### Code: DE57

Subject: NETWORKS AND TRANSMISSION LINES

- b. Derive an expression for the current i(t) in a series R-C circuit when it is excited by an impulse input with zero initial conditions. (8)
- **Q.4** a. State and prove maximum power transfer theorem.
  - b. Using Thevenin's theorem, find out current in the resistance connected across the terminals AB shown in Fig.2 (8)



- Q.5 a. Derive an expression for the transmission parameters of a two port network.(8)
  - b. Find Z parameters for the circuit shown in Fig.3. Also draw equivalent circuit of the network using Z parameters. (8)





- Q.6 a. Determine the parameters of an RLC series circuit that will resonate at 1000 Hz, has a bandwidth of 100 Hz and draws 16 W power from a 200 V generator operating at the resonant frequency of the circuit.
  (8)
  - b. What is series resonance? Derive an expression for
    - (i) resonant frequency
    - (ii) circuit impedance
    - (iii) power factor
    - (iv) circuit current at resonance

(8)

- Q.7 a. Explain the factors causing distortion in a transmission line and methods to minimise distortion. (10)
  - b. Explain primary constants of a transmission line and draw the equivalent circuit of transmission line using these constants. (6)

ROLL NO.

### Code: DE57

Subject: NETWORKS AND TRANSMISSION LINES

- **Q.8** a. A high frequency transmission line consists of a pair of open wires having a distributed capacitance of  $0.01 \,\mu$ F/km and distributed inductance of 4 mH/km. Calculate its characteristic impedance and propagation constant at a frequency of 10 MHz. (4)
  - b. Derive an expression for characteristics impedance and propagation constant of a transmission line at radio frequencies. (4)
  - c. Explain the concept of single and double stub impedance matching of lines.(8)
- **Q.9** a. Design T and  $\pi$  sections of a constant K high pass filter having cut off frequency of 12 kHz and design impedance  $R_0 = 500 \Omega$ . Also find attenuation at a frequency of 4 kHz. (8)
  - b. Design a T type symmetrical attenuator, which offers 40dB attenuation with a load of 400  $\Omega$ . (8)