\qquad

DipIETE - ET/CS

Time: 3 Hours
JUNE 2014
Max. Marks: 100
please write your roll no. at the space provided on each page IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. The value of $\operatorname{Lim}_{x \rightarrow 0} \frac{\cos a x-\cos b x}{x^{2}}$ is
(A) $\frac{a^{2}-b^{2}}{2}$
(B) $\frac{\mathrm{b}^{2}-\mathrm{a}^{2}}{2}$
(C) $\frac{a^{2}+b^{2}}{2}$
(D) $\mathrm{a}^{2}+\mathrm{b}^{2}$
b. If $e^{x}(\sin x-\cos x)$ then $\frac{d y}{d x}$ is equal to
(A) $\mathrm{e}^{\mathrm{x}} \sin \mathrm{x} \cdot \cos \mathrm{x}$
(B) $2 \mathrm{e}^{\mathrm{x}} \sin \mathrm{x} \cdot \cos \mathrm{x}$
(C) $2 e^{x} \cos x$
(D) $2 e^{x} \sin x$
c. If $\mathrm{z}=1+\mathrm{i} \sqrt{3}$, then the value of $\mathrm{z}^{2}+4$ is equal to
(A) 2 z
(B) $3 z$
(C) 4 z
(D) z
d. The expression $6 e^{5 \pi i / 6}$ is the form of $(a+i b)$ is equal to
(A) $3 \sqrt{3}+\mathrm{i}$
(B) $3 \sqrt{3}+3 i$
(C) $-3 \sqrt{3}+3 i$
(D) $3 \sqrt{3}-3 \mathrm{i}$
e. If the position vector \vec{a} of the point $(5, n)$ is such that $|\vec{a}|=13$, then the value of n is equal to
(A) ± 13
(B) ± 11
(C) ± 14
(D) ± 12
f. $\int_{0}^{\pi / 2} \sin ^{2} x d x=\int_{0}^{\pi / 2} \cos ^{2} x d x$ then I is equal to
(A) $\pi / 2$
(B) $\pi / 4$
(C) $-\pi / 2$
(D) $-\pi / 4$
g. The solution of $\frac{d^{2} y}{d x^{2}}+8 \frac{d y}{d x}+16 y=0$ is,
(A) $y=\left(C_{1}+C_{2}\right) e^{-4 x}$
(B) $\mathrm{y}=\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}\right) \mathrm{e}^{4 \mathrm{x}}$
(C) $y=\left(C_{1}+C_{2} x\right) e^{-4 x}$
(D) $y=\left(C_{1}+C_{2}\right) e^{4 x}$
h. The period of the function of $\tan \pi x$ is equal to
(A) 2
(B) 3
(C) 1
(D) 4
i. $L\{5 \sin 2 t-3 \cos 2 t\}$ is equal to
(A) $\frac{10-3 \mathrm{~s}}{\mathrm{~s}^{2}+4}$
(B) $\frac{10+3 s}{s^{2}+2}$
(C) $\frac{10+5 s}{s^{2}+4}$
(D) $\frac{10-5 \mathrm{~s}}{\mathrm{~s}^{2}-4}$
j. $\quad L^{-1}\left\{\frac{4 s-3}{s^{2}+9}\right\}$ is equal to
(A) $4 \cos 3 t-\sin 3 t$
(B) $\cos 3 t+\sin 3 t$
(C) $2 \cos 3 t-\sin 3 t$
(D) $2 \cos 3 t+\sin 3 t$

Answer any FIVE Questions out of EIGHT Questions.

Each question carries 16 marks.
Q. 2 a. Evaluate $\operatorname{Lim}_{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{1 / x^{2}}$ in the form of indeterminant.
b. Use Taylor's theorem, expand $\sqrt{1+\sin \mathrm{x}}$ upto sixth power of x .
Q. 3 a. Compute the are length of the curve $\mathrm{ay}^{2}=\mathrm{x}^{3}$ from $\mathrm{x}=0$ to a point having $\mathrm{x}=0$ to a point having $\mathrm{x}=5 \mathrm{a}$
b. Find the length of an arch of the cycloid whose equations are $x=a(\theta+\sin \theta)$ and $y=a(1+\cos \theta)$
Q. 4 a. If $\left|z_{1}+z_{2}\right|=\left|z_{1}-z_{2}\right|$, prove that the difference of amplitudes of z_{1} and z_{2} is

$$
\begin{equation*}
\pi / 2 . \tag{8}
\end{equation*}
$$

b. A resistance of 20 ohms an inductance of 0.2 Henry and a capacitance of 100 micro-farad are connected in series across 220 volts, 50 cycle/sec main. Calculate, (i) Impedance, (ii) Current, (iii) Voltage across, L, R and C.
Q. 5 a. A rigid body is rotating with angular velocity 2 radian / sec about an axis OR, where R is $2 i-j+k$ and O is the origin. Find the velocity of the point $3 i+2 j-$ k on the body.
b. A force of 15 units acts parallel to the line $\mathrm{i}-2 \mathrm{j}+2 \mathrm{k}$ and passes through the points $2 i-2 j-k$. Using vector method, find the magnitude of the moment of the force about the point $\mathrm{i}+\mathrm{j}-\mathrm{k}$.
Q. 6 a. Solve the differential equation $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=x+\sin x$
b. A body weighing 10 kg is hung from a spring. A pull of 20 kg . Wt. will stretch the spring to 10 cm . The body is pulled down to 20 cm below the static equilibrium position and then released. Find the displacement of the body from its equilibrium position at time t sec., the maximum velocity and the period of oscillation.
Q. 7 a. Find a Fourier series for the function $\mathrm{f}(\mathrm{x})=\mathrm{x}$ is the interval $[-\pi, \pi]$
b. Develop $f(x)$ is Fourier series in the interval (0,2), if
$f(x)=\left\{\begin{array}{l}\pi x, 0 \leq x \leq 1 \\ \pi(2-x), 1 \leq x \leq 2\end{array}\right.$
Q. 8 a. Find the Laplace transform of cost . cos2t . cos 3 t .
b. Find Laplace transform of $\cos ^{4} t$
Q. 9 a. Find $L^{-1}\left\{\frac{3 s-2}{s^{2}-4 s+20}\right\}$
b. Solve the equation
$\frac{d^{2} \mathrm{x}}{\mathrm{dt}^{2}}+2 \frac{\mathrm{dx}}{\mathrm{dt}}+5 \mathrm{x}=\mathrm{e}^{-\mathrm{t}} \sin \mathrm{t}, \mathrm{x}(0)=0, \mathrm{x}^{1}(0)=1$
Using Laplace transform.

