\qquad

DipIETE - ET/CS

Time: 3 Hours
JUNE 2014
Max. Marks: 100
PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.
NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. $\operatorname{Lt}_{\mathrm{x} \rightarrow 0} \frac{\mathrm{e}^{2 \mathrm{x}}-1}{\mathrm{x}}$ is equal to
(A) 2
(B) 3
(C) -2
(D) -3
b. If $f(x)=x \cos x-\sin x$, then $f^{\prime}(x)$ is equal to
(A) $x \sin x$
(B) $-x \sin x$
(C) $x \cos x$
(D) $-x \cos x$
c. $\int \sin ^{2} x \cdot \cos ^{2} x d x$ is equal to
(A) $\frac{1}{8}\left(x-\frac{\sin 4 x}{4}\right)+c$
(B) $\frac{1}{8}\left(x+\frac{\sin 4 x}{4}\right)+c$
(C) $\frac{1}{8}\left(x-\frac{\cos 4 x}{4}\right)+c$
(D) $\frac{1}{8}\left(x+\frac{\cos 4 x}{4}\right)+c$
d. If $\left[\begin{array}{ccc}x & 2 x & -3 \\ 5 & y & 2 \\ 1 & -1 & z\end{array}\right]\left[\begin{array}{ccc}3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3\end{array}\right]=\left[\begin{array}{ccc}5 & 3 & 3 \\ 19 & -5 & 16 \\ 1 & -3 & 0\end{array}\right]$, then x, y, z is equal to
(A) $\mathrm{x}=1, \mathrm{y}=1, \mathrm{z}=1$
(B) $\mathrm{x}=1, \mathrm{y}=2, \mathrm{z}=3$
(C) $\mathrm{x}=-1, \mathrm{y}=2, \mathrm{z}=-3$
(D) $\mathrm{x}=1, \mathrm{y}=0, \mathrm{z}=1$
e. If $s=\left|\begin{array}{ccc}2 & 3 & 4 \\ -4 & x & -8 \\ 5 & 6 & 7\end{array}\right|=0$, then x is equal to
(A) 2
(B) -6
(C) 6
(D) -2
f. If $17^{\text {th }}$ and $18^{\text {th }}$ terms is the expansion of $(2+\mathrm{a})^{50}$ are equal then the value of a is equal to
(A) 1
(B) 2
(C) 3
(D) 4
g. The solution of the differential equation $\frac{d y}{d x}=x y^{2}-x y$ is equal to
(A) $\log \frac{y-1}{y}=\frac{x^{2}}{2}+c$
(B) $\ell \log \frac{y-1}{y}=x+2+c$
(C) $\log \frac{y+1}{y}=\frac{x^{2}}{2}+c$
(D) $\log \frac{y+1}{y}=x-2+c$
h. If $\frac{\cos 12^{\circ}+\sin 12^{0}}{\cos 12^{0}-\sin 12^{0}}=x$, Then x is equal to
(A) $\tan 45^{\circ}$
(B) $\tan 60^{\circ}$
(C) $\tan 90^{\circ}$
(D) $\tan 57^{\circ}$
i. The angle between the lines $2 \mathrm{x}+\mathrm{y}+4=0$ and $\mathrm{y}-3 \mathrm{x}-7=0$ is equal to
(A) $\frac{\pi}{2}$
(B) $\frac{\pi}{4}$
(C) $\frac{2 \pi}{3}$
(D) $\frac{\pi}{3}$
j. If one end of the diameter of the circle $x^{2}+y^{2}+4 x+6 y-12=0$ is $(1,1)$ then other end of the diameter is equal to
(A) $(-5,-7)$
(B) $(-2,-3)$
(C) $(-3,5)$
(D) $(2,7)$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. If $\mathrm{y}=\mathrm{e}^{\mathrm{ax}} . \sin \mathrm{bx}$, then prove that $\mathrm{y}_{2}-2 \mathrm{ay}_{1}+\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) \mathrm{y}=0$
b. Find the equation of the tangent to the curve $y^{2}=3-5 x$ parallel to the lines $5 x-4 y+13=0$
Q. 3 a. Evaluate $\int \mathrm{e}^{2 \mathrm{x}} \cdot \sin 3 \mathrm{x} d \mathrm{x}$
b. Evaluate $\int_{1}^{2} \frac{5 x^{2}}{x^{2}+4 x+3} d x$

ROLL NO.

Code: DE51/DC51 Subject: ENGINEERING MATHEMATICS - I

Q. 4 a. Let $A=\left[\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}5 & 2 \\ 7 & 4\end{array}\right], C=\left[\begin{array}{ll}2 & 5 \\ 3 & 8\end{array}\right]$ find a matrix D such that $C D-A B=0$
b. Using Cramer's rule, solve the following system of liner equations,
$(a+b) x-(a-b) y=4 a b$
$(a-b) x+(a+b) y=2\left(a^{2}-b^{2}\right)$
Q. 5 a. Solve the differential equation $(x+y) d y+(x-y) d x=0$ given that $\mathrm{y}=1$ when $\mathrm{x}=1$
b. Solve the equation $\cos x(1+\cos y) d x-\sin y(1+\sin x) d y=0$
Q. 6 a. Prove that the coefficient of x^{n} is expansion of $\left(\frac{1+x}{1-x}\right)^{2}$ is $4 n$
b. Let S_{n} denote the sum of the first n terms of an A.P. If $S_{2 n}=3 s_{n}$, then prove that $\frac{s_{3 n}}{s_{n}}=6$
Q. 7 a. If A, B, C are the angles of a triangle, then prove that, $\sin 2 \mathrm{~A}+\sin 2 \mathrm{~B}+\sin 2 \mathrm{C}=4 \sin \mathrm{~A} \cdot \sin \mathrm{~B} \cdot \sin \mathrm{C}$
b. Prove that, $\cos 20^{\circ} \cdot \cos 60^{\circ} \cdot \cos 40^{\circ} \cdot \cos 80^{\circ}=\frac{1}{16}$
Q. 8 a. Find the equation of the two straight lines through $(7,9)$ and making an angle of 60° with the line $x-\sqrt{3} y-2 \sqrt{3}=0$
b. Find the area of the triangle formed by the lines $y=x, y=2 x$ and $y=3 x+4$
Q. 9 a. Find the equation of the circle passing through the point $(1,-2) \&(4,-3)$ and which has its centre on the strength line $3 x+4 y=7$
b. Find the focus, vertex, axis, latus-rectum and directrix of the parabola $x^{2}+4 x+2 y=0$

