ROLL NO. _____

Code: DE102/DC102 Subject: FUNDAMENTALS OF ELECTRICAL & ELECTRONICS

Diplete - et/cs {NEW SCHEME}

Time: 3 Hours

JUNE 2014

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions, selecting at least TWO questions from each part. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. The expression for the current flowing at any instant after the application of a constant voltage V to a circuit having a capacitance C in series with a resistance R is given by.....

(A)
$$i = \frac{R}{V} e^{-t/RC}$$

(B) $i = \frac{R}{V} e^{t/RC}$
(C) $i = \frac{V}{R} e^{t/RC}$
(D) $i = \frac{V}{R} e^{-t/RC}$

- b. The expression for power for three phase star connected circuit in terms of line voltage V_L , line current I_L and power factor $\cos \phi$ is given by.....
 - (A) $\frac{\sqrt{3} \times V_L \times I_L}{\cos \phi}$ (B) $\frac{3 \times V_L \times I_L}{\cos \phi}$ (C) $\sqrt{3} \times V_L \times I_L \times \cos \phi$ (D) $3 \times V_L \times I_L \times \cos \phi$

c. The emf generated by a given dc generator depends upon

- (A) flux only (B) speed only
- (C) flux and speed (D) terminal voltage
- d. In transformers power transferred from primary winding to secondary winding by

(A) mutual induction	(B) self induction
(C) static induction	(D) dynamic induction

ROLL NO. ____

Code: DE102/DC102 Subject: FUNDAMENTALS OF ELECTRICAL & ELECTRONICS

e. Three resistance of each R ohms are connected to form a triangle. the resistance between any two terminals will be

	(A) R ohms	(B) $\frac{3}{2}$ R ohms		
	(C) $\frac{2}{3}$ R ohms	(D) 3 R ohms		
f.	As the temperature of semiconductor	r increases its:		
	(A) Conductivity decreases(C) Resistivity increases	(B) Conductivity increases(D) Atomic number decreases		
g.	The ripple factor of half wave rectifi	er		
	(A) 1.21(C) 0.48	(B) 1.12 (D) 2.5		
h.	a. As compared to a CB amplifier, the CE amplifier has			
	(A) lower input impedance(C) lower current amplification	(B) higher output impedance(D) higher current amplification		
i.	. The bandwidth of an amplifier with negative feedback			
	(A) increases(C) remains constant	(B) decreases(D) none of these		
j.	The base of the transistor is			
	(A) heavily doped(C) lightly doped	(B) moderately doped(D) none of these		
PART A				

PART A Answer at least TWO questions. Each question carries 16 marks.

Q.2	a.	State and explain Fleming's left hand rule.	(4)
	b.	Compare magnetic and electric circuit.	(6)
	c.	A coil consisting of 100 turns is placed in the magnetic field of 0.8 Calculate the average emf induced in the coil when it is moved in 0.08 the given field to the field of 0.3 mWb.	
Q.3	a.	State and explain Superposition theorem with example.	(8)

ROLL NO. _____

Code: DE102/DC102 Subject: FUNDAMENTALS OF ELECTRICAL & ELECTRONICS

	b.	A capacitor of 100 μ F is connected across a 200 V, 50 Hz single phase supply. Calculate:		
		 (i) the reactance of the capacitor (ii) rms value of current (iii) maximum current (3+3+2) 		
Q.4	a.	Explain the principle of operation of a DC motor. (8)		
	b.	The armature of a 6 - pole dc shunt motor has a lap winding accommodated in 50 slots, each containing 24 conductors. If the useful flux per pole is 25 m Wb, calculate the total torque developed, when the armature current is 45 A. (8)		
Q.5	a.	Explain the basic principle of operation of single phase transformer. (8)		
	b.	A 3- phase induction motor runs at almost 1000 rpm at no load and 940 rpm at full load when supplied with power from a 50 Hz, 3- phase line. Calculate: (i) number of poles (ii) slip at full load (4+4)		
PART B Answer at least TWO questions. Each question carries 16 marks.				
Q.6	a.	Explain Insulator, Semiconductor & conductor with help of energy band structure. (8)		
	b.	Explain DC load line analysis of a diode circuit with the help of suitable example. (8)		
Q.7	a.	Draw the circuit diagram of a bridge rectifier and explain its operation with the help of necessary wave form. (8)		
	b.	Draw and explain clamping circuit. (8)		
Q.8	a.	Sketch and explain the input and output characteristics of CE configurations of transistors. (8)		
	b.	With the help of circuit diagrams, explain working of voltage-divider biasing circuits. What are its advantages over other type of biasing method? (8)		
Q.9	a.	Explain working of single stage CE amplifier with the help its circuit diagram. (8)		
	b.	Draw circuit diagram of BJT phase shift oscillator and explain its working. (8)		