DiPIETE - ET/CS \{NEW SCHEME\}

Time: 3 Hours

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. $\operatorname{Lt}_{\mathrm{x} \rightarrow 0}^{\mathrm{Lt}} \frac{\mathrm{e}^{2 \mathrm{x}}-1}{\mathrm{x}}$ is equal to
(A) 3
(B) -2
(C) 2
(D) -3
b. If $y=(x+1)(x+2)$, then $\frac{d y}{d x}$ is
(A) $3 x+2$
(B) $2 x+3$
(C) $2 x-3$
(D) $3 x-2$
c. $\int \sin ^{2} \mathrm{x} \cdot \cos ^{2} \mathrm{x} d \mathrm{x}$ is equal to
(A) $\frac{1}{8}\left(x+\frac{\cos 4 x}{4}\right)+C$
(B) $\frac{1}{8}\left(x-\frac{\cos 4 x}{4}\right)+C$
(C) $\frac{1}{8}\left(x+\frac{\sin 4 x}{4}\right)+C$
(D) $\frac{1}{8}\left(x-\frac{\sin 4 x}{4}\right)+C$
d. If $3\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]=\left[\begin{array}{cc}x & 6 \\ -1 & z w\end{array}\right]+\left[\begin{array}{cc}4 & x+y \\ z+w & 3\end{array}\right]$ then x, y, z and w is equal to
(A) 2, 4, 1, 3
(B) $1,2,3,4$
(C) $3,2,4,1$
(D) 4, 3, 2, 1
e. If $\Delta=\left[\begin{array}{cc}x-2 & -3 \\ 3 x & 2 x\end{array}\right]=3$, then the value of x is
\qquad
(A) $\frac{1}{2}, 3$
(B) $\frac{1}{2},-3$
(C) $-\frac{1}{2}, 3$
(D) $-\frac{1}{2},-3$
f. $A=\cos \theta\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ and $B=\sin \theta\left[\begin{array}{cc}\sin \theta & -\cos \theta \\ \cos \theta & \sin \theta\end{array}\right]$ then $A+B$ is equal to
(A) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(B) $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
(C) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(D) $\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$
g. The value of $2 \cos \left(\frac{\pi}{13}\right) \cdot \cos \left(\frac{9 \pi}{13}\right)+\cos \left(\frac{3 \pi}{13}\right)+\cos \left(\frac{5 \pi}{13}\right)$ is equal to
(A) ∞
(B) 1
(C) 0
(D) 2
h. If $17^{\text {th }}$ and $18^{\text {th }}$ terms in the expansion of $(2+a)^{50}$ are equal then the value of a is
(A) 1
(B) -1
(C) 2
(D) -2
i. If $\tan \alpha=\frac{a}{a+1}, \tan \beta=\frac{1}{2 a+1}$, then $(A+B)$ is equal to
(A) $\tan ^{-1}\left(\frac{\pi}{4}\right)$
(B) $\tan ^{-1}\left(\frac{\pi}{2}\right)$
(C) $\tan ^{-1}\left(\frac{\pi}{3}\right)$
(D) $\tan ^{-1} \pi$
j. The slop of the line joining between the pts. $(1,2)$ and $(4,5)$ is equal to
(A) 2
(B) -1
(C) 1
(D) -2
Q. 2 a. Prove that $\cos \mathrm{A} \cdot \cos \left(60^{\circ}-\mathrm{A}\right) \cdot \cos \left(60^{\circ}+\mathrm{A}\right)=\frac{1}{4} \cos 3 \mathrm{~A}$ and deduce that $\cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \cos 80^{\circ}=\frac{1}{8}$
b. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the angle of a triangle, then prove that $\cos \mathrm{A}+\cos \mathrm{B}+\cos \mathrm{C}=1+$ $4 \sin \mathrm{~A} / 2 . \sin B / 2 . \sin C / 2$
Q. 3 a. Find the co-efficient of x^{32} in the expansion of $\left(x^{4}-\frac{1}{x^{3}}\right)^{15}$. Also find coefficient of x^{-17}.
b. The sum of first three terms of a G.P. is 16 and the sum of the next three term is 128 . Find the sum of the $n^{\text {th }}$ term of GP.
Q. 4 a. Show that, $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]=\left[\begin{array}{cc}1 & -\tan \theta / 2 \\ \tan \theta / 2 & 1\end{array}\right]\left[\begin{array}{cc}1 & \tan \theta / 2 \\ -\tan \theta / 2 & 1\end{array}\right]^{-1}$ (8)
b. Find the matrix A satisfying the equation $\left[\begin{array}{ll}2 & 1 \\ 5 & 3\end{array}\right] A\left[\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
Q. 5 a. For what values of K are the three lines $4 x+7 y-9=0,5 x+k y+15=0$ and $9 x-y+6=0$ are concurrent.
b. Find the equation of the two lines passing through the point $(1,-1)$ and inclined at an angle of 45° with the line $2 x-5 y+7=0$
Q. 6 a. Find the equation of the circle which passes through the intersection of two circles, $x^{2}+y^{2}-8 x-24 y+7=0$, and $x^{2}+y^{2}-4 x+10 y+8=0$ and has it centre on the x -axis.
b. Find the centre, length of the axes, eccentricity, directrices, foci and the length of the latus rectum of the hyperbola $9 x^{2}-16 y^{2}=144$
Q. 7 a. If $y=x \log \frac{x-1}{x+1}$, show that $y_{n}=(-1)^{n-2}(n-2) \cdot\left[\frac{x-n}{(x-1)^{n}}-\frac{x+n}{(x+1)^{n}}\right]$
b. Find the value of x for which the function $(x-2)^{3} \cdot(x-3)^{2}$ is a maximum or minimum.
Q. 8 a. Evaluate $\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+2\right)} d x$
\qquad
b. Evaluate $\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$
Q. 9 a. Solve the initial value problem $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y-4 x^{2}=0$, when $\mathrm{y}(0)=0 .(8)$
b. Solve $\mathrm{x}(\mathrm{y}-\mathrm{x}) \frac{d y}{d x}=y(y+x)$

