ROLL NO. _

Code: DC54 Subject: DATA STRUCTURES

Diplete – CS

JUNE 2014

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

Time: 3 Hours

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

- a. Running out of memory may occur due to:
 - (A) non-recursive function call(B) recursive function call(C) use of more global variables(D) none of these
- b. Matrices in which the non-zero entries tend to cluster around the middle of each row are called ______ matrix.
 - (A) adjacency matrix(B) sparse matrix(C) dynamic matrix(D) band matrix
- c. In _____ data structures insertion and deletions takes place at the same end.

(A)	Stack	(B)	queue
(C)	Tree	(D)	linked list

d. Recursion often provides elegant solution to programming task but ______ function waste a lot of memory.

(A) recursive function	(B) void function
(C) call function	(D) return function

e. A graph represents ______ relationship between nodes.

(A) one to many	(B) many to many
(C) many to one	(D) none of these

f. For converting infix to postfix expression, the best data structure to use is

(A) Queue	(B) Stack
(C) Graph	(D) Tree

1

ROLL NO. _

	Code: DC54 Subject	: DATA STRUCTURES	
g.	g. Number of all possible binary trees with 4 nodes is:		
	(A) 14 (C) 24	(B) 34(D) None of these	
h.	A characteristics of the data that binary search uses but the linear search ignores is that		
	(A) order of the list(C) maximum value in the list	(B) length of the list(D) mean of data value	
i.	Which of the following is used for opening a file?		
	(A) fscanf()(C) fread()	(B) fopen()(D) None of these	
j.	Related data items of different types are organized using		
	(A) Tree(C) Structure	(B) Binary Search Tree(D) Stack	

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	Write the preorder traversal algorithm of binary tree. Explain with the help an example.	o of (8)
	b.	Explain the algorithm for searching a target key in a binary search tree.	(8)
Q.3	a.	Write an algorithm in C language syntax to delete the ith node in a singlinked list.	gly (8)
	b.	How linked list can be used for representing polynomials? Explain using suitable example.	ga (8)
Q.4	a.	Represent stack using a single one dimensional array. Write and expl function for "push" and "pop" operation on stack.	ain (8)
	b.	Write a C program that shows implementation of priority queue.	(8)
Q.5	a.	Write an algorithm that searches an element using binary search method. ((8)
	b.	Describe Merge sort using an example.	(8)
Q.6	a.	What are different ways of representing a graph? Explain using suita example.	ble (8)

ROLL NO.

		Code: DC54 Subject: DATA STRUCTURES	
	b.	What is minimum cost spanning tree? Using a suitable example, derive E First spanning tree.	Depth (8)
Q.7	a.	Write a 'C' function to insert a node at the end of a doubly linked list.	(8)
	b.	Write an algorithm to merge two circular linked list.	(8)
Q.8	a.	Using a suitable example program, explain stack overheads in recursion.	(10)
	b.	Explain with differences the following three functions used for dyn memory allocation:	
		malloc, relloc, calloc	(6)
Q.9		Differentiate between structures and unions using suitable example.	(8)
	b.	Write a C program that implements a direct access file.	(8)

3