ROLL NO. _

Code: AE74

Subject: VLSI DESIGN

AMIETE – ET

Time: 3 Hours

JUNE 2014

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10)

a. The speed power product of the basic logic gate circuit of NMOS technology is measured in

(A) picojoules	(B) nanoseconds
(C) milli watts	(D) mega Hertz

b. The value of electron surface mobility at room temperature is

(A) $240 \text{ cm}^2/\text{v sec}$	(B) $650 \text{ cm}^2/\text{v sec}$
(C) $340 \text{ cm}^2/\text{v sec}$	(D) 750 cm ² /v sec

c. The ratio of pull up to pull down registers for an NMOS inverter driven directly from output of another should have

$(A) \ge 8/1$	(B) ≥ 1/8
$(C) \ge 4/1$	(D) ≥1/4

d. The diffusion to diffusion separation in CMOS design process is

(A) 1 λ	(B) 2 λ
(C) 3λ	(D) 4 λ

e. The overall propagation delay for n sections of a cascade pass transistor is

(A) $n^2 rc\tau$	(B) nc \Box c _g
(C) rcτ	(D) aner

f. The power dissipation per gate in MOS circuits is scaled by

(A) β/α^2	$(\mathbf{B}) \frac{1}{\beta^2}$
(C) $\frac{\alpha^2}{\beta}$	(D) β^2

AE74 / JUNE - 2014

ROLL NO. ____

Code: AE74

Subject: VLSI DESIGN

g. The regularity factor for a 4×4 bit shifter is

(A) 4	(B) 16
(C) 32	(D) 64

h. The dynamic power consumption in CMOS design is

(A)
$$\frac{C_L m.f}{V_{DD}^2}$$
 (B) $\frac{C_L m.f}{V_{DD}}$
(C) $mC_L V_{DD} f$ (D) $mC_L V_{DD}^2 f$

i. The delay associated with NMOS NAND is

(A) n
$$\tau_{inv}$$
 (B) p τ_{inv}
(C) n/ τ_{inv} (D) $\frac{p}{\tau_{inv}}$

j. The current in any bus branch along the length L of parent bus at a distance x from the source is

(A)
$$\frac{I_L}{L(1-x)}$$
 (B) $\frac{L}{I_L(1-x)}$
(C) $\frac{L(1-x)}{I_L}$ (D) $\frac{I_L(1-x)}{L}$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	Explain basic n MOS transistors.	(8)
	b.	Explain the thermal aspects of processing nMOS and CMOS devices.	(8)
Q.3	a.	Derive the relationship between transconductance and output conducta MOS transistors.	ance for (8)
	b.	Explain CMOS inverter.	(4)
	c.	Explain Bi CMOS Latch up susceptibility.	(4)
Q.4	a.	Explain contact cuts in NMOS circuits.	(8)
	b.	Write down the double metal MOS process rules.	(4)
	c.	Explain design rules for wires in 2 µm CMOS.	(4)
Q.5	a.	Calculate the rise time and fall time of a CMOS inverter.	(8)

ROLL NO. _____

	Co	ode: AE74 Subject: VLSI DESIGN	
	b.	Explain the sources of capacitance which contribute to the overal capacitance.	l wiring (8)
Q.6	a.	Derive an expression for depletion width.	(8)
	b.	Explain the structured design of multiplexer.	(8)
Q.7	a.	Where the various approaches used at different stages of VLSI design Explain the basic architecture of 4 bit digital processor.	process? (8)
	b.	Design a 4 bit adder.	(8)
Q.8	a.	What are the factors considered to make a comparative assessmen dynamic shift registers?	t of the (8)
	b.	Explain floor plan layout of a 4- bit processor.	(8)
Q.9		Write short note on:	(4×4)
		 (i) Design Rule Checkers (ii) CIF code (iii) CAD Tools for design and simulation (iv) Signature Analysis in BIST 	