ROLL NO.

Code: AE72

Time: 3 Hours

Subject: MICROWAVE THEORY AND TECHNIQUES

AMIETE – ET

JUNE 2014

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. A transmission line is called a flat line when its Standing Wave Ratio (SWR) is

(A) 0	(B) 1
(C) infinity	(D) minimum

b. The dominant mode in a particular waveguide is mode having

(A) highest cut off frequency(C) minimum energy

(B) lowest cut off frequency

(**D**) maximum energy

c. In a Magic Tee, if a wave is fed into port 3 (the E arm), it will produce an output of ______ at port 1 and port 2. The o/p at port 4 is zero.

(A) equal magnitude & opposite phase(B) equal magnitude & equal (same) phase

(C) magnitude halved and same phase

- (**D**) equal magnitude & same phase
- d. The abbreviation LSA in LSA diodes stands for
 - (A) Laser Stimulated Accumulation
 - (B) Limited Space Charge Accumulation
 - (C) Liquid Space Charge Argon
 - (D) Limited Space Charge Assimilator
- e. The efficiency of a two cavity klystron is about

(A) 40%	(B) 10%
(C) 80%	(D) 60%

Code: AE72 Subject: MICROWAVE THEORY AND TECHNIQUES

- f. Crossed field tubes derive their name from the fact that
 - (A) DC electric field & DC magnetic field are parallel to each other
 - (B) DC electric field & DC magnetic field are perpendicular to each other
 - (C) AC electric field & AC magnetic field are parallel to each other
 - (D) AC electric field & AC magnetic field are perpendicular to each other
- g. Modes on microstrip lines are only

(A) TE modes	(B) TM modes
(C) Can be either TE or TM	(D) TEM modes

- h. Following are types of Lithography technology: One of these which is not a type of Lithography
 - (A) Electron beam Lithography
 - (B) Conducting beam Lithography
 - (C) Ion beam Lithography
 - (D) X-ray Lithography
- i. Both microwave circulators and isolators are ______transmission devices, that use the property of ______.
 - (A) Non Reciprocal, Faraday Rotation
 - (B) Reciprocal, Faraday Rotation
 - (C) Random, Faraday Rotation
 - (**D**) Reversible, Finite element theory
- j. Quality factor Q is a measure of frequency selectivity of a resonant or antiresonant circuit and is defined as

Energy dissipated per cycle

(A) $Q = 2\pi$ Max. Energy stored

Energy dissipated per cycle

(B) $Q = \pi$ Max. Energy stored

Energy dissipated per cycle

(C) $Q = \pi$ — Max. Energy dissipated

Maximum Energy stored

(D) $Q = 2\pi$ Energy dissipated per cycle

ROLL NO.

Code: AE72 Subject: MICROWAVE THEORY AND TECHNIQUES

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Compare waveguides with 2 wire transmission lines. Give any four similarities & four dissimilarities.(8)
 - b. A transmission line has a characteristic impedance of $50 + j \ 0.01\Omega$ and is terminated in a load impedance of $73 j \ 42.5 \ \Omega$ (8) calculate (i) the reflection coefficient (ii) the standing wave ratio
- - b. A TE_{11} mode is propagating through a circular waveguide. The radius of the guide is 5 cm and guide contains an air dielectric. Find the cut off frequency. Given, for TE_{11} mode, n = 1, p = 1 and $X_{11} = 1.841 = K_c$.a where a is the radius. (6)
- Q.4 a. What is a tee junction? Explain a magic tee. What are its applications? (8)
 - b. Determine the scattering parameters (S₁₄, S₄₁, S₃₁, S₁₃, S₁₁, S₂₂, S₃₃, S₄₄) only for a 10 dB directional coupler with given data: Directivity D = 30 dB Assume it is lossless.
 VSWR at each port = 1.0 under matched condition. Designate ports in the main guide as 1 & 2 and in auxiliary guide as 3 and 4. (8)

Q.5 a. Explain the principle of operation of a tunnel diode. Draw its I-V characteristics.

- b. Explain two valley model theory of Gunn diodes.(10)(6)
- Q.6 a. Draw a neat diagram of a two cavity Klystron amplifier. Explain the process of Bunching.(8)
 - b. A four cavity Klystron VA-828 has the following parameters: (8) Beam voltage $V_0 = 14.5 \text{kV}$ Beam current $I_0 = 1.4\text{A}$ Operating frequency f = 10 GHzdc electron charge density $\rho_0 = 10^{-6} \text{C/m}^3$ RF charge density $\rho = 10^{-8} \text{C/m}^3$ Velocity per turbation $v = 10^5 \text{m/s}$

Compute: (i) dc electron velocity (ii) dc phase constant (iii) Plasma frequency (iv) dc beam current density

ROLL NO. _

Cod	l e: A	AE72 Subject: MICROWAVE THEORY AND TECH	INIQUES
Q.7	a.	What is a magnetron Oscillator? What are its various types?	(6)
	b.	An X band pulsed magnetron has the following operating parameters. Anode voltage $V_0 = 26 \text{ kV}$ Beam current $I_0 = 27 \text{ A}$ Magnetic flux density $B_0 = 0.336 \text{ Wb/m}^2$ Radius of cathode cylinder $a = 5 \text{ cm}$ Radius of vane edge to center $b = 10 \text{ cm}$ Compute: (i) Cyclotron Angular frequency (ii) Cut off voltage for a fixed B_0 (iii) Cut off magnetic flux density for a fixed V_0	(10)
Q.8	a.	Explain characteristic impedance of microstrip lines.	(4)
	b.	Explain quality factor of microstrip lines.	(4)
	c.	Explain various losses in microstrip lines.	(8)
Q.9	a.	List the various techniques by which monolithic microwave integrated can be fabricated. Explain lithography.	circuits (10)
	b.	A planar resistor has the following parameters: Resistive film thickness: $t = 0.1 \mu m$ Resistive film length: $\ell = 15 \text{ mm}$ Resistive film width $w = 15 \text{ mm}$ Sheet Resistivity of gold film $\rho_s = 2.44 \times 10^{-8} \Omega$ -m	
		Calculate the planar Resistance.	(6)