AMIETE – ET

Time: 3 Hours

JUNE 2014

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. The work done by the force $\vec{F} = 4a_x - 3a_y + 2a_z$ N in giving a 1 nC charge a displacement of $10a_x + 2a_y - 7a_z$ is

(A) 103 n J	(B) 60 n J
(C) 64 n J	(D) 20 n J

- b. By saying that the electrostatic field is conservative, we do not mean that
 - (A) Its circulation is identically zero.
 - (B) The potential difference between any two points is zero.
 - (C) Its curl is identically zero.
 - (**D**) It is the gradient of a scalar potential.
- c. If $\nabla . \vec{D} = \epsilon \nabla . \vec{E}$ and $\nabla . \vec{J} = \sigma \nabla . \vec{E}$ in a given material, the material is said to be

(A) Linear	(B) Isotropic
(C) Linear and homogeneous	(D) Linear and isotropic

d. Given field $\overrightarrow{A} = 3x^2yza_x + x^3za_y + (x^3y - 2z)a_z$. It can be said that \overrightarrow{A} is

(A) Conservative	(B) Rotational	
(C) Harmonic	(D) Solenoidal	

e. Which of the following potential does not satisfy Laplace's equation

(A) $V = 10/r$	(B) $V = \rho \cos \varphi + 10$
(C) $V = 2x + 5$	(D) $V = r \cos \varphi$

Code: AE63 Subject: ELECTROMAGNETICS & RADIATION SYSTEMS

f. Which one of these equation is not Maxwell's equation for a static electromagnetic field in a linear homogeneous medium?

(A)
$$\nabla . \overrightarrow{B} = 0$$

(B) $\nabla^2 . \overrightarrow{A} = \mu_0 \overrightarrow{J}$
(C) $\nabla \times \overrightarrow{D} = 0$
(D) $\oint \overrightarrow{B} . dl = \mu_0 I$

g. Which of these formula is wrong?

(A)
$$\vec{B}_{1n} = \vec{B}_{2n}$$

(B) $\vec{H}_1 = \vec{H}_{1n} + \vec{H}_{1t}$
(C) $B_2 = \sqrt{B_{2n}^2 + B_{2t}^2}$
(D) $\hat{a}_{n_{21}} \times (H_1 - H_2) = K$

h. Which of the following is not Maxwell's equation for time - varying fields..

(A)	$\nabla . \overrightarrow{J} + \frac{\partial \rho_{v}}{\partial t} = 0$	(B) $\nabla . D = \rho_v$
(C)	$\nabla . \overrightarrow{\mathbf{E}} = -\frac{\partial \overrightarrow{\mathbf{B}}}{\partial t}$	$(\mathbf{D}) \oint \stackrel{\rightarrow}{\mathbf{B}} \cdot \mathbf{d}\overline{\mathbf{s}} = 0$

i. In a certain medium $\vec{E} = 10 \cos (10^8 \text{ t} - 3 \text{ y}) a_x \text{ V/m}$. What type of medium is it

(A) Free space	(B) Lossy dielectric
(C) Perfect conductor	(D) Lossless dielectric

j. A very small, thin wire of length $\frac{\lambda}{100}$ has a radiation resistance of

(A) $\approx 0\Omega$	(B) 7.9Ω
(C) 0.08 Ω	(D) 790 Ω

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. A circular ring of radius a carries a uniform charge ρ_L C/m and is placed on the xy – plane with axis the same as the z – axis. Show that $\vec{E}(0,0,h) = \frac{\rho_L ah}{2 \in_0 [h^2 + a^2]^{3/2}} \hat{a}_z$ (8)

Code: AE63 Subject: ELECTROMAGNETICS & RADIATION SYSTEMS

b. A charge distribution with spherical symmetry has density

$$\rho_{\rm v} = \begin{cases} \frac{\rho_0 r}{R} & 0 \le r \le R\\ 0 & r > R \end{cases}. \quad \text{Determine } \stackrel{\rightarrow}{E} \text{ everywhere} \qquad (8)$$

- Q.3 a. Discuss the boundary condition at a conductor and free space boundary in electrostatics. (8)
 - b. Given the potential $V = \frac{10}{r^2} \sin \theta \cos \phi$
 - (i) Find the electric flux density D at $(2, \pi/2, 0)$

(ii) Calculate the work done in moving a $10\,\mu\text{C}$ charge from the point

A(1,
$$30^{0}, 120^{0}$$
) to B (4, $90^{0}, 60^{0}$) (8)

- **Q.4** a. State and derive the uniqueness theorem.
 - b. In spherical coordinates V = 0 at r = 0.2m and V = 200 at r = 4m. Calculate the potential in various regions. Assume free space between these concentric spherical shells. (8)
- Q.5 a. Explain the scalar and magnetic potentials with the help of one example of each. (8)
 - b. Given the volume current density distribution in cylindrical coordinates as. $J(r, \ \varphi \, , \, z) = 0 \qquad 0 < r < a$

$$= J_0 \left(\frac{r}{a}\right) a_z \quad a \le r \le b$$
$$= 0 \quad b < r < \infty$$

Find the magnetic field intensity H in various regions. (8)

- Q.6 a. Find the expression of torque acting on a differential current loop in a magnetic field B. (8)
 - b. Given that $H_1 = -2a_x + 6 a_y + 4 a_z A/m$ in region $y x 2 \le 0$ where $\mu_1 = 5\mu_0$ calculate (i) $M_1 \& B_1$ (ii) $H_2 \& B_2$ in region $y - x - 2 \ge 0$ where $\mu_2 = 2\mu_0$ (8)
- Q.7 a. Write the integral and differential form of Maxwell's equations for time varying fields.(5)
 - b. A parallel plate capacitor with plate area of 5 cm^2 and plate separation of 3 mm has a voltage 50 sin 1000t volt applied to its plates. Calculate the displacement current. Assume $\epsilon = 2 \epsilon_0$. (6)
 - c. State and explain Faraday's law and find expression for the emf. (5)

(8)

Code: AE63 Subject: ELECTROMAGNETICS & RADIATION SYSTEMS

Q.8		Explain the following:(i) Polarization of waves(iii) Skip distance	(ii) Tropospheric scatter propagition(iv) Radiation Resistance	gation (16)
Q.9	a.	Define the following (i) Directive gain (iii) End-fire array	(ii) Resonant Antenna (iv) Horn Antenna	(8)
	b.	Explain working principle and co write its applications.	ng principle and constructional features of Helical Anten ations.	