Code: AE62/AC62/AT62 Subject: OPERATIONS RESEARCH & ENGG. MANAGEMENT

AMIETE – ET/CS/IT

JUNE 2014

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

Time: 3 Hours

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Selecting THREE questions from part A and TWO questions from part B.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. The solution to a transportation problem with m rows and n-columns is feasible if number of positive allocations are

(A) m + n	$(\mathbf{B}) \mathbf{m} \times \mathbf{n}$
(C) m + n - 1	(D) $m + n + 1$

- b. In queuing system the calling population is assumed to be infinite when
 - (A) arrivals are independent of each other
 - (**B**) capacity of the system is infinite
 - (C) service rate is faster than the arrival rate
 - (D) all of these
- c. If an optimal solution is degenerate in simplex method, then
 - (A) There are alternative optimal solutions
 - **(B)** The solution is infeasible
 - (C) The solution is of no use to the decision maker
 - **(D)** None of these
- d. Decision variables in OR are

(A)	Controllable	(B) Uncontrollable
(C)	Parameters	(D) None of these

- e. An ISO-Profit line in LPP represents
 - (A) an infinite number of solutions all of which yield the same cost
 - (\mathbf{B}) an infinite number of solutions all of which yield the same profit
 - (C) an infinite number of optimal solution
 - (D) a boundary of the feasible region

Code: AE62/AC62/AT62 Subject: OPERATIONS RESEARCH & ENGG. MANAGEMENT

f. The size of the pay off matrix of a game can be reduced by using the principle of

(A) game inversion	(B) rotation reduction
(C) dominance	(D) game transpose

g. In PERT/CPM the activity which can be delayed without affecting the execution of the immediate succeeding activity is determined by

(A) total float	(B) free float
(C) independent float	(D) none of these

h. Maslow and Herzberg are two examples of ______ theories of motivation.

(A) Expectancy	(B) Content
(C) Process	(D) Equity

i. Which of following might be classified as functions of the "Staff organisation" as opposed to functions of the "line organisation"?

(A) Computer support services	(B) Personnel
(C) Public relations	(D) All of these

j. Contingency theories of leadership are based on the belief that

(A) There is a single style of leadership appropriate to all managers

- (B) There is no single style of leadership appropriate to all situations
- (C) There is a single style of leadership appropriate to all situations
- (D) None of these

PART A Answer any THREE Questions. Each question carries 16 marks.

Q.2	a.	Write the dual of the following LPP-					
		minimise $z = 10x_1 + 20x_2$					
		subject to					
		$3x_1 + 2x_2 \ge 18$					
		$\mathbf{x}_1 + 3\mathbf{x}_2 \ge 8$					
		$2x_1 - x_2 \le 6$					
		$\mathbf{x}_1, \mathbf{x}_2 \ge 0$	(6)				
	h	Solve the following LPP using simplex method	(10)				
	0.	maximise $z = 2x_1 + 4x_2$	(10)				
		Subject to					
		$2x_{1} + x_{2} < 18$					
		$2x_1 + 2y_2 > 20$					
		$3x_1 + 2x_2 \ge 30$					
		$x_1 + 2x_2 = 26$					
		$\mathbf{x}_1, \mathbf{x}_2 \ge 0$					

Code: AE62/A	C62	2/AT62	Subj	ject: ()PER	ATI	ONS	RESI	EAR	CH &	ENG	G. MA	NAGEMENT
Q.3	a.	Solve the maximise Subject to $x_1 + 2x_2$ $x_1 + x_2 \le$ $x_2 \le 600$ $x_1 \ge 0, x_2$	linear z = 3 z = 3 z = 3 z = 3 z = 2000 z = 1500 z = 2	progra x ₁ + 5x 0	ammin ₂	g prob	lem by	⁷ Grapl	hical n	nethod		(1	0)
	b.	Model bu	ilding	is the o	essence	e of th	ie "O.F	. appr	oach",	Discu	ss.	(6)
Q.4	a.	A Project	has th	e follo	wing t	ime so	chedule	e				(12	2)
		Activity:	1-2	1-3	1-4	2-5	3-6	3-7	4-6	5-8	6-9	7-8	
		Time in Month:	2	2	1	4	8	5	3	1	5	4	
		Activity	8-9										
		Time in Months	3										
	_	Construct (i) Total (ii) Critic	t netwo float t cal pat	ork dia for eac h and i	gram a h activ ts dura	nd co ity tion	mpute						
	b.	Distinguis	sh betv	veen P	ERT a	nd CP	'M tech	iniques	5.			(4	4)
Q.5	a.	Solve the	follow	ving mi	inimal	assign	nment j	proble	m			(8	3)
				ľ	Man								
		Ι	$\frac{1}{12}$	3	20	$\frac{3}{21}$		4					
		J II	18	33	3	9		31					
		o b III	44	25	5	24	2	21					
		IV	23	3()	28	-	4					
			-			-							

b. Find the initial solution for the transportation problem by Vogel's approximation method (VAM) (8)

3

Code: AE62/AC62/AT62 Subject: OPERATIONS RESEARCH & ENGG. MANAGEMENT

			То		
		W1	W2	W3	Supply
	F1	2	7	4	5
From	F2	3	3	1	8
	F3	5	4	7	7
	F4	1	6	2	14
Dema	and	7	9	18	

Q.6	a.	a. What do you understand by queue? Give some important applications of queuing theory?					
	b.	What do you mean by- (i) Two person zero sum game					

- (ii) Saddle point
- (iii) Pure and mixed strategies

PART B Answer any TWO questions. Each question carries 16 marks.

Q.7	a.	What are the different functions of management and what are the import of these functions at various levels of management?	ance (8)
	b.	What is the organisation structure and how the organisation charts are here to provide a broad picture of positions of authorities and their relationship the organisation structure.	lpful ps in (8)
Q.8	a.	Explain the various techniques of business forecasting.	(8)
	b.	Explain the process of decision making.	(8)
Q.9	a.	What do you understand by marketing mix?	(8)
	b.	Define leadership and explain leadership characteristics.	(8)

(8)