Code: AE61

Time: 3 Hours

Subject: CONTROL ENGINEERING

ROLL NO.

AMIETE – ET

JUNE 2014

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE **IMMEDIATELY AFTER RECEIVING THE OUESTION PAPER.**

NOTE: There are 9 Questions in all.

- Ouestion 1 is compulsory and carries 20 marks. Answer to 0.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

```
0.1
        Choose the correct or the best alternative in the following:
                                                                                              (2 \times 10)
```

a. The transfer function is defined only for

(A) linear time varying systems	(B) linear time invariant systems
(C) linear & non linear systems	(D) all of these

b. A polar plot crosses the real axis at (-1+i0) point. The phase margin of the system is

$(A) - 1^{\circ}$	(B) 0°	
$(C) - 180^{\circ}$	$(\mathbf{D}) + 180^{\circ}$	

c. The root locus plot of the system having the loop transfer function $G(s)H(s) = \frac{K}{s(s+2)(s+4)}$ has

(A) no breakaway point

(B) three real breakaway points (C) only one real breakaway point (D) none of these

d. A transfer function which has all its poles and zeros only in the left half of the s-plane is called

(A) an all pass transfer function

- (B) a minimum phase transfer function
- (C) a non-minimum phase transfer function
- (**D**) none of these
- e. For the pole factor $\frac{1}{(s+5)}$, the corner frequency is

(A) 1/5	(B) 5
(C) -5	(D) -1/5

f. For a standard second-order system described by the characteristic equation as $s^{2} + 2\zeta \omega_{n}s + \omega_{n}^{2} = 0$ the term ω_{n} indicates

(A) natural frequency	(B) damping factor
(C) time-constant	(D) none of these

g. Which of the following compensation scheme increases bandwidth of system (A) lead compensation (B) lag compensation (C) feedback compensation (**D**) forward compensation

		NULL NU	_
Co	de: AE61	Subject: CONTROL ENGINEERING	
h.	If the system has non- repea	ted poles on $j\omega$ axis (imaginary axis) , the system is	
	(A) stable(C) marginally stable	(B) unstable(D) conditionally stable	
i.	For overdamped system, the	e damping ratio is	
	(A) zero(C) more than one	(B) one(D) infinity	
j.	If Laplace transform of $f(t)$	is $F(s)$. The Laplace transform of $df(t)/dt$ is	
	(A) F(s)/s (C) sF(s)	(B) $sF(s)-f(0)$ (D) $s^2F(s)$	
h. i. j.	If the system has non- repeat (A) stable (C) marginally stable For overdamped system, the (A) zero (C) more than one If Laplace transform of f(t) if (A) F(s)/s (C) sF(s)	 ted poles on jω axis (imaginary axis), the system i (B) unstable (D) conditionally stable e damping ratio is (B) one (D) infinity is F(s). The Laplace transform of df(t)/dt is (B) sF(s)-f(0) (D) s²F(s) 	is

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Define the terms servomechanism? Derive the transfer function of an armature controlled dc servomotor. (8)
 - b. Write the dynamic equation in respect of the mechanical system given in Fig.1 below, also draw F-V analogous circuit. (8)

Q.3 a. Determine the transfer function C(s) /R(s) for the block diagram shown in Fig.2 below. (8)

Fig.2

b. Reduce the signal flow graph shown in Fig.3 below using Mason's gain formula:
 G H₁ (8)

Subject: CONTROL ENGINEERING

ROLL NO.

Q.4 a. Discuss the effect of negative feedback on the following: (i) Disturbance (ii) Stability (iii) Parameter variation (iv) System Dynamics

(8)

- b. Write short technical note on controller components using its block diagram. (8)
- Q.5 a. A unity feedback system is characterized by the open loop transfer function

 $G(s) = \frac{1}{s (0.5s + 1)(0.2s + 1)}$

Code: AE61

Determine the steady state error for unit step, unit ramp and unit acceleration input. (8)

b. Using Routh–Hurwitz stability criterion, determine the stability of the following characteristic polynomial:

$$F(s) = s^{6} + 4s^{5} + 12s^{4} + 16s^{3} + 41s^{2} + 36s + 72$$
(8)

- Q.6 Sketch the root loci for the system whose open loop transfer function is given by $G(s)H(s) = \frac{K}{s(s+2)(s^2+6s+25)}$ (16)
- Q.7 a. Derive the correlation between time and frequency domain responses by considering standard second order control system. (6)
 - b. Given the open loop transfer function. (10)

$$G(s)H(s) = \frac{20}{s(s+2)(s+10)}$$

Sketch the Bode plot of the system and determine the following: (i) gain margin (ii) phase margin

- Q.8 a. Explain the tuning of PID controllers. (8)
 - b. Discuss realization of basic compensators. (8)
- Q.9 a. Discuss controllability and observability. (4)
 - b. The vector matrix differential equation describing the dynamics of the system is given by $\mathbf{X} = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix} \mathbf{X}$.

Obtain the solution of the above equation if $X(0) = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$ (12)