ROLL NO.

Code: AE57/AC57/AT57

Subject: SIGNALS AND SYSTEMS

AMIETE - ET/CS/IT

Time: 3 Hours

JUNE 2014

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

0.1	Choose the correct or the best alternative in the following:	(2×10)
X.T	choose the correct or the best difficulty in the following:	

a. For a signal x(n), x(n+1) corresponds to

(A) Advance	(B) Delay	
(C) Compression	(D) Folding	

b. Step function u(t) is obtained from ramp function r(t) by

(A) Integrating	(B) Differentiating
(C) Double Integration	(D) Differentiating twice

c. A causal system depends on

(A) Past values only	(B) Present values only
(C) Linear	(D) Both (A) and (B)

d. A signal that violates the first Dirichlet condition i.e. x(t) must be absolutely integrable is

$(\mathbf{A}) t^2$	(B) t
(C) t^{3}	(D) 1/ t

e. The transform of discrete time signal x(-n) will be

(A) $X(e^{-j\omega})$	(B) $X(e^{j\omega})$
(C) $X(e^{-2j\omega})$	(D) $X(e^{-3j\omega})$

f. Smoother Interpolation strategies are known as

(A) Lower order holds	(B) Higher order holds
(C) Intermediate order holds	(D) Moderate order holds

g. The Frequency response of an LTI system with impulse response $h(t) = e^{-t} u(t)$ is

(A) 1/ (jω+ 1)	(B) $1/(j\omega - 1)$
(C) 1/ (1-jω)	(D) $1/(e^{j\omega}+1)$

ROLL NO.

Code: AE57/AC57/AT57

Subject: SIGNALS AND SYSTEMS

h. Fourier Transform is used to convert from Time domain to frequency domain, the signals which are

(A) Periodic(B) Aperiodic(C) Both (A) and (B)(D) None of these

- i. Step response of a first order system
 - (A) Always exhibits Ringing Effect(B) Does not exhibit Ringing Effect(C) Sometimes exhibits Ringing Effect
 - (D) Sometimes does not exhibit Ringing Effect
- j. For a signal which is bandlimited to a frequency of 500 Hz, the Nyquist Rate will be

(A) 100 Hz	(B) 1000 Hz
(C) 50 Hz	(D) 150 Hz

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	(i) Explain the transformations done on the independent variable	(4)
		(ii) Find out the power of the signal $x(t) = A \sin t$	(4)
	b.	Define unit impulse and unit step functions. Give their relationship.	(4)
	c.	Define Linearity. Find if the following systems are Causal and Linear? (i) $y(t)=t x(t)$ (ii) $y(n)=2 x(n)+3$	(4)
Q.3	a.	Determine the Fourier Series coefficients of a periodic square wave $x(t) = \begin{cases} 1 & t < T_1 \\ 0 & T_1 < t < T/2 \end{cases}$	(8)
	b.	Give the criteria of convergence of continuous time Fourier series.	(8)
Q.4	a.	Find the Continuous Time Fourier Transform of $x(t) = e^{-at}u(t)$; $a > 0$	(8)
	b.	Prove the Convolution property of CTFT.	(8)
Q.5	a.	Find the DTFT of $x(n) = a^n u(n)$	(8)
	b.	Find the frequency response of system that is characterized by the difference equation y (n) - $\frac{34}{y(n-1)} + \frac{1}{8} y(n-2) = 2 x(n)$	erence (8)

ROLL NO.

	Cod	e: AE57/AC57/AT57 Subject: SIGNALS AND SYSTEMS
Q.6	a.	Construct the frequency response of Continuous time ideal low pass filter with that of discrete time ideal low pass filter. (8)
	b.	Explain Sampling Theorem. Define Nyquist rate and Aliasing. Illustratereconstruction of a continuous time signal from its samples.(8)
Q.7	a.	Find out the Laplace transform of $x(t) = \delta(t)-4/3e^{-t} u(t) + 1/3 e^{2t} u(t)$ and sketch the ROC in s-plane. (8)
	b.	Give the properties of ROC of Laplace Transforms. (8)
Q.8	a.	Find the z transform of x(n) = $(1/3)^n \sin\left(\frac{\pi}{4}n\right)u(n)$ (8)
	b.	Explain the scaling property and Differentiation in z domain property of Z transforms. (8)
Q.9	a.	Give the mathematical definition of random process X(t). (8)

b. What is a Gaussian Process? Give its properties. (8)

3