\qquad

Time: 3 Hours
JUNE 2014
Max. Marks: 100
PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. Which one of the following functions is harmonic-
(A) $u(x, y)=4 x y-3 x+2$
(B) $u(x, y)=x^{2}+y^{2}$
(C) $u(x, y)=x^{2} y+x y^{2}$
(D) $u(x, y)=x y-x^{2} y^{2}$
b. The value of the integral $\int_{C} \frac{d z}{z-4}$, where c is $|\mathrm{z}|=1$, is
(A) $2 \pi \mathrm{i}$
(B) 4π i
(C) $-4 \pi \mathrm{i}$
(D) 0
c. A particle moves along the curve $x=t^{3}+1, y=t^{2}, z=2 t+3$, where t is the time. The component of its velocity at $t=1$ in the direction $\hat{i}+\hat{j}+3 \hat{k}$ is equal to
(A) 11
(B) $\sqrt{11}$
(C) $\frac{1}{\sqrt{11}}$
(D) None of these
d. The value of integral $\int_{0}^{1}\left(e^{t} \hat{i}+e^{-2 t} \hat{j}+t \hat{k}\right) d t$ is equal to
(A) $e \hat{i}-\left(e^{2}-1\right) \hat{j}+\hat{k}$
(B) $(\mathrm{e}-1) \hat{\mathrm{i}}-\left(\mathrm{e}^{2}-1\right) \hat{\mathrm{j}}-\hat{\mathrm{k}}$
(C) $(\mathrm{e}-1) \hat{\mathrm{i}}-\frac{1}{2}\left(\mathrm{e}^{-2}-1\right) \hat{\mathrm{j}}+\frac{1}{2} \hat{\mathrm{k}}$
(D) 0
e. If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ then the value of div \vec{r} is equal to
(A) 0
(B) 1
(C) 2
(D) 3
f. The value of $\Delta^{3}(1-x)(1-2 x)(1-3 x)$ is
(A) -6
(B) 3
(C) 2
(D) -36
g. The partial differential equation by eliminating arbitrary function ' f ' from $z=e^{y} f(x+y)$ is
(A) $\frac{\partial z}{\partial y}=y+z-\frac{\partial z}{\partial x}$
(B) $\frac{\partial z}{\partial y}=z+\frac{\partial z}{\partial x}$
(C) $\frac{\partial \mathrm{z}}{\partial \mathrm{x}}=\mathrm{x}-\frac{\partial \mathrm{z}}{\partial \mathrm{y}}$
(D) $\frac{\partial z}{\partial x} \frac{\partial z}{\partial y}=x$
h. If a card is drawn from a deck of playing cards, then the probability that it will be either the king of Diamonds or the Queen of Hearts is equal to
(A) $\frac{1}{52}$
(B) $\frac{1}{2}$
(C) $\frac{1}{13}$
(D) $\frac{1}{26}$
i. The probability of throwing 9 with two dice is equal to
(A) $\frac{1}{9}$
(B) $\frac{1}{36}$
(C) $\frac{1}{4}$
(D) $\frac{1}{18}$
j. If the probability of a defective bolt is 0.1 , then the mean for the distribution bolts in a total of 400 is
(A) 4
(B) 40
(C) 400
(D) 0.4

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. Show that the real and imaginary parts of the function $\mathrm{w}=\log \mathrm{z}$ satisfy the Cauchy-Riemann equations when z is not zero.
b. Find the bilinear transformation which maps $z=1, i,-1$ onto $w=i, 0$, -i respectively.
Q. 3 a. Evaluate the following integral using Cauchy integral formula $\int_{C} \frac{4-3 z}{z(z-1)(z-2)} d z$ where C is the circle $|z|=\frac{3}{2}$.
b. Obtain the Taylor's or Laurent's series which represents the function
$f(z)=\frac{1}{\left(1+z^{2}\right)(z+2)}$
when-
(i) $1<|z|<2$
(ii) $|z|>2$
Q. 4 a. Find the directional derivative of the divergence of $(x, y, z)=x y \hat{i}+x y^{2} \hat{j}+z^{2} \hat{k}$ at the point $(2,1,2)$ in the direction of the outer normal to the sphere, $x^{2}+y^{2}+z^{2}=9$
b. A vector \vec{r} is defined by $\overrightarrow{\mathrm{r}}=x \hat{\mathrm{i}}+y \hat{j}+z \hat{k}$. If $|\overrightarrow{\mathrm{r}}|=r$ then show that the vector $r^{n} \mathrm{r}$ is irrotational.
Q. 5 a. Evaluate by Green's theorem in plane $\int_{c}\left(e^{-x} \sin y d x+e^{-x} \cos y d y\right)$ Where C is the rectangle with vertices $(0,0),(\pi, 0),\left(\pi, \frac{1}{2} \pi\right),\left(0, \frac{1}{2} \pi\right)$
b. Using Stoke's theorem, evaluate $\int_{c}\left[(2 x-y) d x-y z^{2} d y-y^{2} z d z\right]$ where C is the circle $x^{2}+y^{2}=1$, corresponding to the surface of sphere of unit radius.
Q. 6 a. Determine $f(x)$ as a polynomial in for the following data:

$x:$	-4	-1	0	2	5
$F(x):$	1245	33	5	9	1335

by using Newton's divided difference formula.
b. Find $\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$ by using Simpson's $\frac{1}{3^{\text {rd }}}$ and $\frac{3}{8^{\text {th }}}$ rule by dividing the range of integration into 6 equal parts. Hence obtain the approximate value of π in each case.
Q. 7 a. Use Lagrange's method to solve $x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=z\left(x^{2}-y^{2}\right)$
b. Use Charpit's method to find complete integral of $q=(z+p x)^{2}$
Q. 8 a. A bag contains 6 white and 9 black balls. Four balls are drawn at a time. Find the probability for the first draw to give 4 white and the second draw to give 4 black balls in each of the following cases-
(i) The balls are replaced before the second daw
(ii) The balls are not replaced before the second draw
b. Three groups of children contain respectively 3 girls and 1 boy, 2 girls and 2 boys; 1 girl and 3 boys. One child is selected at random from each group. Find the chance of selecting 1 girl and 2 boys.
Q. 9 a. A manufacturer knows that the condensers he makes contain on an average 1% of defectives. He packs them in boxes of 100 . What is the probability that a box picked at random will contain 4 or more faulty condensers?
b. A sample of 100 dry battery cells tested to find the length of life produced the following results-
$\overline{\mathrm{x}}=12$ hours, $\sigma=3$ hours
Assuming the data to be normally distributed, what percentage of battery cells are expected to have life-
(i) More than 15 hours
(ii) Less than 6 hours
(iii)Between 10 and 14 hours

