## Code: AE51/AC51/AT51 Subject: ENGINEERING MATHEMATICS - I

## AMIETE - ET/CS/IT

Time: 3 Hours

## JUNE 2014

Max. Marks: 100
please write your roll no. at the space provided on each page IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.
NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. If $z=f(y / x)$ then the value of $x\left(\frac{\partial z}{\partial x}\right)+y\left(\frac{\partial z}{\partial y}\right)$ is equal to
(A) z
(B) -z
(C) 0
(D) 1
b. The function $f(x)=x^{5}-5 x^{4}+5 x^{3}-10$ has a maximum at-
(A) $x=0$
(B) $x=1$
(C) $x=2$
(D) none of these
c. The value of the integral $\int_{1}^{2} \int_{0}^{x} \frac{d x d y}{x^{2}+y^{2}}$ is equal to
(A) $\pi \log 2$
(B) $\pi \log \frac{1}{2}$
(C) $\pi^{2} \ell \log 2$
(D) $\frac{\pi}{4} \log 2$
d. The rank of the matrix $\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$ is equal to
(A) 1
(B) 2
(C) 3
(D) 4


## Code: AE51/AC51/AT51 Subject: ENGINEERING MATHEMATICS - I

e. The rank of the matrix $A+B$ where $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3\end{array}\right], B=\left[\begin{array}{ccc}-1 & -2 & -1 \\ 6 & 12 & 6 \\ 5 & 10 & 5\end{array}\right]$ is equal to
(A) 1
(B) 2
(C) 3
(D) 0
f. Integrating factor of the differential equation $x\left(\frac{d y}{d x}\right)+2 y=x^{2} \log x$ is equal to
(A) $\mathrm{x}^{2}$
(B) $\log x^{2}$
(C) $\frac{1}{x}$
(D) $\log x$
g. The orthogonal trajectories of the family of curves $y=a x^{2}$ is
(A) $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{c}^{2}$
(B) $x^{2}-y^{2}=c^{2}$
(C) $x^{2}+2 y^{2}=c^{2}$
(D) $x y=c^{2}$

Where c is an arbitrary constant
$h$. The solution of the differential equation $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=e^{x}$ is
(A) $y=c_{1} e^{x}+c_{2} e^{3 x}+x$
(B) $y=\left(c_{1}+c_{2}\right) e^{x}-x e^{x}$
(C) $y=c_{1} e^{x}+c_{2} e^{2 x}-x e^{x}$
(D) $\mathrm{y}=\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2} \mathrm{e}^{\mathrm{x}}-\mathrm{e}^{2 \mathrm{x}}$
i. The value of the integral $\int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{5}}} d x$ is equal to
(A) $\frac{1}{2} \mathrm{~B}\left(\frac{3}{5}, \frac{1}{2}\right)$
(B) $\frac{1}{5} \mathrm{~B}\left(\frac{1}{3}, \frac{1}{2}\right)$
(C) $\mathrm{B}\left(\frac{3}{5}, \frac{2}{5}\right)$
(D) $\frac{1}{5} \mathrm{~B}\left(\frac{3}{5}, \frac{1}{2}\right)$
j. If $P_{n}(x)$ is a solution of Legendre's equation, then value of $P_{0}(x)$ will be
(A) 1
(B) 0
(C) -1
(D) $x$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

## Code: AE51/AC51/AT51 Subject: ENGINEERING MATHEMATICS - I

Q. 2 a. If $u=x \phi(y / x)+\psi(y / x)$, prove that $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=0$
b. Show that the maximum and minimum of the radii vectors of the sections of the surface $\left(x^{2}+y^{2}+z^{2}\right)^{2}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}$ by the plane $\lambda x+\mu y+\gamma z=0$ are given by the equation- $\frac{a^{2} \lambda^{2}}{1-a^{2} r^{2}}+\frac{b^{2} \mu^{2}}{1-b^{2} r^{2}}+\frac{c^{2} \gamma^{2}}{1-c^{2} r^{2}}=0$
Q. 3 a. Evaluate $\iint(x+y)^{2}$ dxdy over the area bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
b. Evaluate $\iiint z^{2} d x d y d z$ over the sphere $x^{2}+y^{2}+z^{2}=1$
Q. 4 a. For what values of $\eta$, the equations $x+y+z=1, x+2 y+4 z=\eta, x+4 y+$ $10 z=\eta^{2}$ have a solution and solve them completely in each case.
b. Determine the eigenvalues and the corresponding eigenvectors of the matrix
$A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$
Q. 5 a. Find by Newton - Raphson method, the real root of the equation:

$$
\begin{equation*}
3 x=\cos x+1 \tag{8}
\end{equation*}
$$

Nearer to 1, correct to three decimal places.
b. Apply Runge-Kutta method of fourth order to find approximate value of y for $x=0.2$, in steps of 0.1 , if $\frac{d y}{d x}=x+y^{2}$, given that $y=1$ where $x=0$
Q. 6 a. Solve the equation $\cos x d y=y(\sin x-y) d x$
b. Find the orthogonal trajectories of the family of curves:
$\frac{x^{2}}{\left(a^{2}+\lambda\right)}+\frac{y^{2}}{\left(b^{2}+\lambda\right)}=1$
Where $\lambda$ is the parameter.
Q. 7 a. Find the solution of the equation $\frac{d^{2} y}{d x^{2}}+4 y=8 \cos 2 x$ given that $y=0$ and $\frac{d y}{d x}=2$ when $x=0$

## Code: AE51/AC51/AT51 Subject: ENGINEERING MATHEMATICS - I

b. Solve by the method of variation of parameters:
$\frac{d^{2} y}{d x^{2}}-y=\frac{2}{1+e^{x}}$
Q. $8 \quad$ a. Show that $\int_{0}^{1} \frac{x^{m-1}(1-x)^{n-1}}{(a+b x)^{m+n}} d x=\frac{1}{(a+b)^{m} a^{n}} B(m, n)$
where $B(m, n)$ is Beta function.
b. Solve following differential equation $\frac{d^{2} y}{d x^{2}}-2 x^{2} \frac{d y}{d x}+4 x y=x^{2}+2 x+2$ in power of $x$.
Q. 9 a. Prove that:

$$
\begin{equation*}
x^{2} J_{n}{ }^{\prime \prime}(x)=\left(n^{2}-n-x^{2}\right) J_{n}(x)+x J_{n+1}(x) \tag{8}
\end{equation*}
$$

b. Prove that

$$
\begin{equation*}
\int_{-1}^{+1}\left(1-x^{2}\right) \mathrm{P}_{\mathrm{m}} \mathrm{P}^{\prime}{ }_{\mathrm{n}} \mathrm{dx}=0 \tag{8}
\end{equation*}
$$

Where m and n are distinct positive integers.

