ROLL NO. _____

Code: AE104

Subject: LINEAR ICs & DIGITAL ELECTRONICS

AMIETE – ET {NEW SCHEME}

Time: 3 Hours

JUNE 2014

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions selecting at least TWO questions from each part, each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. The Slew Rate of an ideal Op-Amp is

(A) Zero	(B) Infinity
(C) Low	(D) High

b. An instrumentation amplifier should have

(A)	High CMRR	(B) Low CMRR
------------	-----------	-----------------------

- (C) High output impedance (D) High DC offset
- c. A Sample and Hold circuit is useful in

(A) Rectifier circuits	(B) Digital interface circuits
(C) Amplifier circuits	(D) Oscillator circuits

d. The 555 Timer is compatible with

(A) Only TTL circuits	(B) Only CMOS circuits
(C) Both TTL & CMOS circuits	(D) Neither TTL nor CMOS circuits

e. The number of comparators required for a 4-bit parallel comparator type A to D converter is

(A) 3	(B) 5
(C) 7	(D) 15

f. $(423)_{10} = (\)_{16}$ (A) 1A7 (C) 1BF (D) 1AE Subject: LINEAR ICs & DIGITAL ELECTRONICS

g. $x + \bar{x}y =$

(A) $\bar{x}y$	$(\mathbf{B}) \mathbf{x} + \bar{\mathbf{y}}$
$(\mathbf{C}) \mathbf{x} + \mathbf{y}$	(D) $\overline{x} + y$

h. Which of the following provides a high output whenever the two inputs are at the same level?

(A) OR operation	(B) XOR operation
(C) NOR operation	(D) XNOR operation

i. The output frequency of decade counter that is clocked from 50 KHz signal is

(A) 25 KHz	(B) 12.5 KHz
(C) 6.25 KHz	(D) 5 KHz

j. The number of Flip-Flops required for constructing a Mod – 10 counter is

(A) 2	(B) 3
(C) 4	(D) 5

PART (A) Answer at least TWO Questions. Each question carries 16 marks.

- Q.2 a. Write about IC chip size and circuit complexity and explain power supply connections of an Op-Amp. (10)
 - b. Calculate i_1, v_0, i_L and total current is into the output pin of the circuit shown below in Fig.1 (6)

Q.3 a. Draw and explain the internal circuit of op-Amp. Explain the following terms:

- (i) Input Offset current(ii) Input Offset Voltage(iii) Slew rate(iv) Stability of Op-Amp
- b. Draw the circuit of instrumentation amplifier and derive the expression for its output.
 - (i) Using two Op-Amp (ii) Using three Op-Amp (8)

ROLL NO. __

- Q.4 a. Draw the circuit of Half-Wave rectifier using Op-Amp and explain. (8)
 - b. Explain the operation of practical differentiator circuit using Op-Amp. (8)
- Q.5 a. Explain the working of monostable multivibrator and derive the expression for the time period "T". (8)
 - b. Draw and explain the functional diagram of 555 Timer IC. Explain its application as pulse position modulator. (8)

PART (B) Answer at least TWO Questions. Each question carries 16 marks.

Q.6	a.	Write the advantages of digital techniques and discuss serial and para transmission.	allel (8)	
	b.	Explain the following codes:(i) BCD Code(ii) ASCII Code(iii) Gray Code(iv) Alphanumeric Code	(8)	
Q.7	a.	Construct a logic circuit for the following Boolean expression $Y = AC + B\overline{C} + \overline{ABC}$ using NAND gates only.	(6)	
	b.	b. Simplify the following logic expression using Karnaugh Map and explain		
		steps; $Y = \overline{C}(\overline{A}\overline{B}\overline{D} + D) + A\overline{B}C + \overline{D}$	(6)	
	c.	State De-Morgans Theorems. Obtain $\overline{A(BC + \overline{D}E + \overline{FG})}$	(4)	
Q.8	a.	Explain BCD adder with a neat diagram.	(4)	
	b.	Implement full adder using 3×8 decoder.	(6)	
	c.	Obtain 16:1 MUX using 2:1 multiplexers only.	(6)	
Q.9	a.	Design a synchronous counter using JK Flip-Flop that has the follow sequence: 000, 010, 101, 110 and repeat. The undesired states 001, 011, and 111 must always go to 000 on the next clock pulse.	ving 100 (8)	
	b.	Explain, with a neat diagram and waveforms, the working of a Mod-6 John counter.	ison (8)	