AMIETE - ET \{ $\mathcal{N E} W$ SCHEMME

Time: 3 Hours
JUNE 2014
Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. The current through capacitor
(A) Leads by 90° the voltage across it
(B) Lags by 90° the voltage across it
(C) Leads by 180° the voltage across it
(D) Lags by 180° the voltage across it
b. LEDs are manufactured using
(A) Germanium
(B) Silicon
(C) Gallium Arsenide
(D) Aluminium
c. For the circuit shown in Fig.1, if the transistor has $\beta=100$, then the value of I_{C} is
(A) 2 mA
(B) 21.5 mA
(C) 2.15 mA
(D) 3.33 mA
d. The Emitter Follower circuit has

(A) High voltage gain
(B) Low current gain
(C) High power gain
(D) Voltage gain close to unity
e. If two BJTs have same f_{T}, the one with smaller β will have
(A) Smaller bandwidth
(B) Larger bandwidth
(C) Zero bandwidth
(D) Infinite bandwidth

ROLL No.

f. The maximum theoretical efficiency of Class B power amplifier is
(A) 78.54%
(B) 25.54%
(C) 50.54%
(D) 85.54%
g. Which of the following amplifiers exhibits the crossover distortion?
(A) Class A
(B) Class B
(C) Class AB
(D) Class C
h. In a voltage series feedback connection
(A) R_{i} increases \& R_{o} decreases
(B) R_{i} decreases \& R_{o} increases
(C) Both $R_{i} \& R_{o}$ increase
(D) Both $R_{i} \& R_{o}$ decrease
i. Which of the following oscillator provides high frequency stability?
(A) Phase shift oscillator
(B) Wein bridge oscillator
(C) Colpitt's oscillator
(D) Crystal oscillator
j. The method used for producing clearly defined shallow regions with uniform concentration of impurity
(A) Ion implantation
(B) Epitaxial growth
(C) Photolithography
(D) Diffusion

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.
Q. 2 a. State Superposition Theorem.
b. In the circuit shown below, determine (i) I (ii) find I_{S} for $V_{S}=16 \mathrm{~V}$ and $\mathrm{I}=0$
(iii) find V_{S} for $I_{S}=16 \mathrm{~A}$ and $\mathrm{I}=0$

Fig. 2
c. Define the terms (i) Node (ii) Branch (iii) Loop (iv) Mesh and write the procedure for writing nodal equations.
Q. 3 a. Explain about n-type doping and p-type doping.
b. Explain PN junction behaviour under forward and reverse bias.
Q. 4 a. Explain the operating of PNP transistor.
b. For the transistor circuit shown below, calculate $I_{C} I_{E}$ and I_{B}, if the transistor's $\beta=50$.

Fig. 3
Q. 5 a. Explain h-parameter model of an amplifying device and draw h-parameter models of BJT.
b. Discuss the BJT biasing circuit with voltage feedback.
Q. 6 a. Explain the mid-frequency response of RC coupled amplifier.
b. In the BJT RC-coupled amplifier of Fig. 4 determine:
(i) V_{o} for $V_{S}=5 m V$
(ii) $R_{\text {in }}$ and
(iii) $R_{\text {out }}$ in
Given $r_{\pi}=600 \Omega, \beta=100$.

Fig. 4
Q. 7 a. Explain the working of Class B transformer coupled push-pull amplifier and derive the expression for its efficiency.
b. Explain Crossover distortion in the push-pull operation of Class B amplifier.

ROLL NO.
Q. 8 a. Explain the effect of feedback on impedances.
b. Draw the circuit of Wien bridge oscillator and derive the expression for its frequency of oscillation.
(8)
Q. 9 a. Explain the following processes in IC fabrication
(i) Diffusion
(ii) Ion implantation
(8)
b. Explain the fabrication of NMOS enhancement type MOSFET.

