ROLL NO.

Code: AE103

Subject: ELECTRONIC DEVICES & CIRCUITS

# AMIETE – ET {NEW SCHEME}

**Time: 3 Hours** 

## **JUNE 2014**

Max. Marks: 100

 $(2 \times 10)$ 

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

#### Q.1 Choose the correct or the best alternative in the following:

- a. The current through capacitor
  - (A) Leads by 90<sup>0</sup> the voltage across it
  - (B) Lags by 90<sup>°</sup> the voltage across it
  - (C) Leads by 180<sup>°</sup> the voltage across it
  - (D) Lags by **180<sup>°</sup>** the voltage across it
- b. LEDs are manufactured using
  - (A) Germanium(C) Gallium Arsenide
- c. For the circuit shown in Fig.1, if the transistor has  $\beta = 100$ , then the value of  $I_{c}$  is
  - (A) 2 mA
  - (**B**) 21.5 mA
  - (C) 2.15 mA
  - (**D**) 3.33 mA
- d. The Emitter Follower circuit has
  - (A) High voltage gain(C) High power gain
- (B) Low current gain

 $200K\Omega$ 

**(B)** Silicon

**(D)** Aluminium

(**D**) Voltage gain close to unity

Fig.1

 $\mathcal{V}$ 

ΒE

- e. If two BJTs have same  $f_T$ , the one with smaller  $\beta$  will have
  - (A) Smaller bandwidth(C) Zero bandwidth
- (**B**) Larger bandwidth
- (D) Infinite bandwidth

 $^{l}C$ 

10V

Assume  $V_{BE} = 0.7V$ 

| Code: Al                               | E103 Subject: E                                                                  | LECTRONIC DEVICES & CIRCUITS                                                |  |
|----------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| f.                                     | The maximum theoretical efficiency of Class B power amplifier is                 |                                                                             |  |
|                                        | <ul><li>(A) 78.54%</li><li>(C) 50.54%</li></ul>                                  | <ul> <li>(B) 25.54%</li> <li>(D) 85.54%</li> </ul>                          |  |
| g.                                     | Which of the following amplifiers exhibits the crossover distortion?             |                                                                             |  |
|                                        | <ul><li>(A) Class A</li><li>(C) Class AB</li></ul>                               | <ul><li>(B) Class B</li><li>(D) Class C</li></ul>                           |  |
| h.                                     | In a voltage series feedback connection                                          |                                                                             |  |
|                                        | (A) $R_{i}$ increases & $R_{o}$ decreases<br>(C) Both $R_{i}$ & $R_{o}$ increase | (B) $R_i$ decreases & $R_o$ increases<br>(D) Both $R_i$ & $R_o$ decrease    |  |
| i. Which of the following oscillator p |                                                                                  | ovides high frequency stability?                                            |  |
|                                        | <ul><li>(A) Phase shift oscillator</li><li>(C) Colpitt's oscillator</li></ul>    | <ul><li>(B) Wein bridge oscillator</li><li>(D) Crystal oscillator</li></ul> |  |

j. The method used for producing clearly defined shallow regions with uniform concentration of impurity

| (A) Ion implantation | ( <b>B</b> ) Epitaxial growth |
|----------------------|-------------------------------|
| (C) Photolithography | <b>(D)</b> Diffusion          |

## Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. State Superposition Theorem.

b. In the circuit shown below, determine (i) I (ii) find  $I_S$  for  $V_S = 16V$  and I=0 (iii) find  $V_{S}$  for  $I_{S} = 16 A$  and I = 0(6)



- c. Define the terms (i) Node (ii) Branch (iii) Loop (iv) Mesh and write the procedure for writing nodal equations. (8)
- Q.3 a. Explain about n-type doping and p-type doping. (8)
  - b. Explain PN junction behaviour under forward and reverse bias. (8)

(2)

## Code: AE103

- **Q.4** a. Explain the operating of PNP transistor.
  - b. For the transistor circuit shown below, calculate  $I_{c}$ ,  $I_{E}$  and  $I_{B}$ , if the transistor's  $\beta = 50$ . (8)



- Q.5 a. Explain h-parameter model of an amplifying device and draw h-parameter models of BJT.
   (8)
  - b. Discuss the BJT biasing circuit with voltage feedback. (8)
- Q.6 a. Explain the mid-frequency response of RC coupled amplifier. (8)
  - b. In the BJT RC-coupled amplifier of Fig.4 determine: (i)  $V_o$  for  $V_s = 5mV$  (ii)  $R_{in}$  and (iii)  $R_{out}$  in the mid-frequency region. Given  $r_{\pi} = 600\Omega$ ,  $\beta = 100$ . (8)



Q.7 a. Explain the working of Class B transformer coupled push-pull amplifier and derive the expression for its efficiency. (10)

3

b. Explain Crossover distortion in the push-pull operation of Class B amplifier.

(6)

ROLL NO. \_\_\_\_\_

| Code | e: Al | E103 Subject: ELECTRONIC DEVICES & C                                                           | IRCUITS        |
|------|-------|------------------------------------------------------------------------------------------------|----------------|
| Q.8  | a.    | Explain the effect of feedback on impedances.                                                  | (8)            |
|      | b.    | Draw the circuit of Wien bridge oscillator and derive the expression frequency of oscillation. | for its<br>(8) |
| Q.9  | a.    | Explain the following processes in IC fabrication<br>(i) Diffusion (ii) Ion implantation       | (8)            |
|      | b.    | Explain the fabrication of NMOS enhancement type MOSFET.                                       | (8)            |