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NOTE: There are 9 Questions in all. 
• Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in 

the space provided for it in the answer book supplied and nowhere else. 
• The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of 

the commencement of the examination. 
• Out of the remaining EIGHT Questions answer any FIVE Questions. Each 

question carries 16 marks. 
• Any required data not explicitly given, may be suitably assumed and stated. 
 

Q.1   Choose the correct or the best alternative in the following: (2×10) 
  

  a. If 
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   (A) 1 (B)  2 
   (C) 3 (D)  4 
 

  b.  The rank of matrix 
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 is       

   (A)   1  (B)  2 
   (C)   3  (D)  4 
 

  c. The value of the double integral 22
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+
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5
+
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  d. The smallest positive root of the equation 05.023 =+− xx  is equal to ______, 
using Newton Raphson method,      

   (A) 1.2872  (B) 2.2952 
   (C) 3.2748  (D) 0.2578 
 

  e. If the differential equation 0122 =−+ qp , then dependent variable z is equal to  

   (A) cyaax +−− 21  (B)  cyaax ++− 21  

       (C) cyaax +−+ 21  (D)  cyaax +++ 21  
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  f. The solution of differential equation 01582
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   (A)  xx ececy 5

2
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1 +=  (B)  ( ) xeccy 3
21 +=  

   (C)  ( ) xeccy 5
21 −=  (D)  xx ececy 5
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−−=  

 
  g. The Particular Integral (P.I.) of the differential equation ( ) xeDD 32 5496 =++  

is equal  
 

   (A) 
36

3xe  (B) 
36

5 3xe  

   (C) 
36

3xe−  (D) 
36

3xe−

 

 

  h.  
( )

dx
bxa

x
nm

m

+

−∞

+∫
1

0

 is equal to   

 
   (A) ( ) mnbanmB +  (B) ( ) mnbanmB ,  
   (C) ( ) mnbamnB  (D) ( ) mnbanmB −  
 

  i. The value of Jacobin ( )
( )θ,

,
r

vu
∂
∂ , where xyvyxu 2,22 =−=  and 

θθ sin,cos rurx ==  
 

(A) 4 (B)  5 
   (C) 6 (D)  3  
 

  j. In the terms of Legendre’s polynomials ( ) ( ) ( )[ ]xPxPxP 024 7208
35
1

++  is equal 

to   
 

   (A) 3x  (B) 2x  
   (C) 4x  (D) 5x  

 
 

Answer any FIVE Questions out of EIGHT Questions. 
Each question carries 16 marks. 

 

 
 Q.2 a. If z be a homogeneous function of degree n, show that 
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  b. If ( )yxfz ,= , where vex u cos=  and vey u sin= , then show that 

y
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+
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∂ 2    (8) 

 

 Q.3 a. Change the order of integration and then evaluate xydxdyI
x

x
∫∫
−

=
21

0 2

 (8) 

 
  b. Find the volume bounded by the cylinder 422 =+ yx  and the planes 3=+ zy  

and z = 0   (8)  
 

 Q.4 a. Find the eigenvalues and eigenvectors of the matrix 














 −
=

322
121
101

A  (8) 

 
             b. Determine the rank of the following matrices  

   (i)   
















2273
862
541

 (ii)  
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7036
2313
4211
1132

 (8)  

 
 Q.5 a. Find the approximate value of the root of the equation 013 =−+ xx  near 

1=x , using the method of Regula-Falsi two times. (8) 
  
  b.  Express the following system of equations in matrix form and solve them by 

the elimination method due to Gauss: 

   

1022
13334
3612666

622

4321

4321

4321

4321

=+−+
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xxxx
xxxx

xxxx
xxxx

  (8) 

 

 Q.6 a. Solve the differential equation ( ) ( )222 2sin82 xxeyD x ++=−  where 
dx
dD ≡  

        (8) 
 

   b. Solve the equation, xy
dx
dyx

dx
ydx log2

2
2 =+−   (8) 

 

 Q.7   a.   Obtain the series solution of 02

2

=++ xy
dx
dy

dx
ydx  (8) 

 
  b. State and prove orthogonality of Legendre polynomials. (8) 
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 Q.8   a. Obtain Fourier series for the function 

   ( ) ( )
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   Deduce that 
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π
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  b. Express ( ) xxf =  as a half-range cosine series in 20 << x   (8) 
  
 Q.9   a. State and prove Convolution theorem for Fourier transforms. (8) 
 

  b. Solve by z-transform ( )[ ]00,0
4
1

4
1

1 =≥





=++ ykyky

k
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