ROLL NO. _____

Code: AE101/AC101/AT101

Subject: ENGINEERING MATHEMATICS-I

AMIETE - ET/CS/IT {NEW SCHEME}

Time: 3 Hours

JUNE 2014

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
- Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a.	If $u = \log \frac{x^4 + y^4}{x + y}$, t	then 2	$x \frac{\partial u}{\partial x}$	+ y	$\frac{\partial u}{\partial y}$ is	s equal to
	(A) 1 (C) 3				((B) 2(D) 4
b.	The rank of matrix	$\begin{bmatrix} 2\\5\\-4 \end{bmatrix}$	3 2 5	4 0 12	-1 -1 -1	is
	(A) 1 (C) 3	L			_	(B) 2(D) 4

c. The value of the double integral $\int_{0}^{1} \int_{0}^{\sqrt{1+x^{2}}} \frac{dy \cdot dx}{1+x^{2}+y^{2}}$, is (A) $\frac{\pi}{4} \log(\sqrt{2}+1)$ (B) $\frac{\pi}{2} \log(\sqrt{3}+1)$ (C) $\frac{\pi}{3} \log(\sqrt{5}+1)$ (D) $\frac{\pi}{5} \log(\sqrt{2}+1)$

d. The smallest positive root of the equation $x^3 - 2x + 0.5 = 0$ is equal to _____, using Newton Raphson method, (A) 1.2872

(A) 1.2872	(B) 2.2952
(C) 3.2748	(D) 0.2578

e. If the differential equation $p^2 + q^2 - 1 = 0$, then dependent variable z is equal to

(A)
$$ax - \sqrt{1 - a^2}y + c$$

(B) $ax - \sqrt{1 + a^2}y + c$
(C) $ax + \sqrt{1 - a^2}y + c$
(D) $ax + \sqrt{1 + a^2}y + c$

Code: AE101/AC101/AT101

Subject: ENGINEERING MATHEMATICS-I

f. The solution of differential equation $\frac{d^2 y}{dx^2} - 8\frac{dy}{dx} + 15y = 0$

(A)
$$y = c_1 e^{3x} + c_2 e^{5x}$$

(B) $y = (c_1 + c_2) e^{3x}$
(C) $y = (c_1 - c_2) e^{5x}$
(D) $y = c_1 e^{3x} - c_2 e^{-5x}$

g. The Particular Integral (P.I.) of the differential equation $(D^2 + 6D + 9)4 = 5e^{3x}$ is equal

(A)
$$\frac{e^{3x}}{36}$$
 (B) $\frac{5e^{3x}}{36}$
(C) $\frac{-e^{3x}}{36}$ (D) $\frac{e^{-3x}}{36}$

h. $\int_{0}^{\infty} \frac{x^{m-1}}{(a+bx)^{m+n}} dx$ is equal to

(A)
$$B(m+n)/a^{n}b^{m}$$

(B) $B(m,n)/a^{n}b^{m}$
(C) $B(mn)/a^{n}b^{m}$
(D) $B(m-n)/a^{n}b^{m}$

i. The value of Jacobin $\frac{\partial(u,v)}{\partial(r,\theta)}$, where $u = x^2 - y^2, v = 2xy$ and $x = r \cos \theta, u = r \sin \theta$ (A) 4 (B) 5

 $\begin{array}{c} (A) \\ (C) \\ (C) \\ (C) \\ (D) \\ (D) \\ (D) \\ (C) \\ (D) \\ (C) \\ (D) \\ (C) \\$

j. In the terms of Legendre's polynomials $\frac{1}{35}[8P_4(x)+20P_2(x)+7P_0(x)]$ is equal to

(A) x^{3}	(B) x^2
(C) x^4	(D) x^5

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	If	Z	be	a	homogeneous	function	of	degree	n,	show	that
$x\frac{\partial^2 z}{\partial x \cdot \partial y} + y\frac{\partial^2 z}{\partial y^2} = (n-1)\frac{\partial z}{\partial y}$												(8)

ROLL NO. ___

Code: AE101/AC101/AT101

Subject: ENGINEERING MATHEMATICS-I

b. If
$$z = f(x, y)$$
, where $x = e^u \cos v$ and $y = e^u \sin v$, then show that
 $y \frac{\partial z}{\partial u} + x \frac{\partial z}{\partial v} = e^{2u} \frac{\partial z}{\partial y}$
(8)

Q.3 a. Change the order of integration and then evaluate $I = \int_{0}^{1} \int_{x^2}^{2-x} xy dx dy$ (8)

b. Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes y + z = 3and z = 0 (8)

Q.4 a. Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$ (8)

b. Determine the rank of the following matrices

	Γ1	1	5 -		2	3	-1	-1		
(i)		4	5 8	8 (ii)	1	$\begin{vmatrix} 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \end{vmatrix}$				
	2	6			3		_2	(8)	8)	
	3	7	22			2	0	2		
	-		_		6	3	0	-/_		

- **Q.5** a. Find the approximate value of the root of the equation $x^3 + x 1 = 0$ near x = 1, using the method of Regula-Falsi two times. (8)
 - b. Express the following system of equations in matrix form and solve them by the elimination method due to Gauss: $2x_1 + x_2 + 2x_3 + x_4 = 6$ $6x_1 - 6x_2 + 6x_3 + 12x_4 = 36$ $4x_1 + 3x_2 + 3x_3 - 3x_4 = -1$ $2x_1 + 2x_2 - x_3 + x_4 = 10$ (8)

Q.6 a. Solve the differential equation $(D-2)^2 y = 8(e^{2x} + \sin 2x + x^2)$ where $D \equiv \frac{d}{dx}$ (8)

b. Solve the equation,
$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = \log x$$
 (8)

Q.7 a. Obtain the series solution of
$$x \frac{d^2 y}{dx^2} + \frac{dy}{dx} + xy = 0$$
 (8)

b. State and prove orthogonality of Legendre polynomials. (8)

Code: AE101/AC101/AT101

Subject: ENGINEERING MATHEMATICS-I

Q.8 a. Obtain Fourier series for the function

$$f(x) = \begin{cases} \pi x, & 0 \le x \le 1 \\ \pi(2-x), & 1 \le x \le 2 \end{cases}$$
Deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots \infty = \frac{\pi^2}{8}$
(8)

b. Express f(x) = x as a half-range cosine series in 0 < x < 2 (8)

Q.9 a. State and prove Convolution theorem for Fourier transforms. (8)

b. Solve by z-transform
$$y_{k+1} + \frac{1}{4}y_k = \left(\frac{1}{4}\right)^k [k \ge 0, y(0) = 0]$$
 (8)