ROLL NO. _

Code: AC65

Subject: DISCRETE STRUCTURES

AMIETE – CS

Time: 3 Hours

JUNE 2014

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. If $A \times B = \{(3, 2), (3, 4), (5, 2), (5, 4)\}$ then

$(\mathbf{A}) \mathbf{A} = \{3, 5\} \mathbf{B} = \{2, 4\}$	(B) A = $\{4, 3\}$ B = $\{5, 2\}$
(C) $A = \{4, 2\} B = \{3, 5\}$	(D) $A = \{2, 4\} B = \{3, 5\}$

b. If R is symmetric relation then

$(\mathbf{A}) \mathbf{R} \cap \mathbf{R}^{-1} \neq \mathbf{\phi}$	$(\mathbf{B}) \ \mathbf{R} \cap \mathbf{R}^{-1} = \mathbf{\phi}$
$(\mathbf{C}) \ \mathbf{R} \cup \mathbf{R}^{-1} = \mathbf{\phi}$	$(\mathbf{D}) \ \mathbf{R} \cup \mathbf{R}^{-1} = \mathbf{R}$

c. Which of the following relations are functions over set $A = \{1, 2, 3, 4\}$:

$(\mathbf{A}) \{ (1, 2), (2, 3), (2, 4), (3, 4) \}$	(B) { $(4, 1), (3, 2), (2, 3), (1, 4)$ }
(C) $\{(4, 1), (4, 2), (4, 3), (4, 4)\}$	(D) $\{(1, 2), (2, 3), (3, 4)\}$

d. If A^c is the complementary event of A, then

$(\mathbf{A}) \mathbf{P}(\mathbf{A}) = \mathbf{P}(\mathbf{A}^{c})$	(B) $P(A) = P(A^{c}) - 1$
(C) $P(A) = 1 - P(A^c)$	(D) $P(A) = (1 - P(A))^{c}$

e. Every subgroup of cyclic group is

(A) Semi-group	(B) Abelian group
(C) Quotient group	(D) Cyclic group

f. The inverse of $\sim p \rightarrow q$ is

(A) $q \rightarrow \sim p$	$(\mathbf{B}) \ \mathbf{p} \to \mathbf{\sim} \mathbf{q}$
(C) $\sim p \rightarrow \sim q$	$(\mathbf{D}) \sim \mathbf{q} \rightarrow \sim \mathbf{p}$

g. If p: "He is rich" and q: "he is unhappy" then choose the correct formula for the statement "He is poor or he is both rich and unhappy"

$(\mathbf{A}) \thicksim p \lor (p \land \thicksim q)$	(B) $p \land (p \land \sim q)$
(C) ~ $p \lor (p \land q)$	(D) $p \lor (p \leftrightarrow q)$

}

Subject: DISCRETE STRUCTURES

h. The hamming distance between x = 110110 and y = 000101 is

(A) 2	(B) 4
(C) 7	(D) 5

- i. A partially ordered set (poset) is called lattice if every subset of two elements has
 - (A) Greatest lower bound
 - (**B**) Least upper bound
 - (C) Both greatest lower and least upper bounds
 - (**D**) None of these
- j. In a ring (R, +, *) the structure (R, *) has to be

(A) Semi-group	(B) Monoid
(C) Group	(D) Abelian group

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- **Q.2** a. Show that for any two sets A and B, $A B = A (A \cap B)$. (8)
 - b. The probability that A hits a target is 1/3 and the probability that B hits a target is 1/5. They both fire at the target. Find the probability that: (8)
 - (i) A does not hit the target.
 - (ii) Both hit the target.
 - (iii) One of them hits the target.
 - (iv) Neither hits the target.
- **Q.3** a. Show that $B \to E$ is a valid conclusion drawn from the following premises: $A \lor (B \to D), \sim C \to (D \to E), A \to C \text{ and } \sim C.$ (8)
 - b. Express the statement $(\sim (p \lor q)) \lor ((\sim p) \land q)$ in simplest possible form. (8)
- **Q.4** a. Show that $\neg \forall x(P(x) \rightarrow Q(x))$ and $\exists x(P(x) \land \neg Q(x))$ are logically equivalent.(4)
 - b. There are two restaurants next to each other. One has a sign that says, "Good food is not cheap" and the other has a sign that says, "Cheap food is not good". Are the signs saying the same thing? (4)
 - c. Verify that $[p \rightarrow (q \rightarrow r)] \rightarrow [(p \rightarrow q) \rightarrow (p \rightarrow r)]$ is a tautology. (8)
- Q.5 a. Let $A = \{1, 2, 3, 4, 5, 6\}$ and let R be the relation defined by "x divides y" written as x / y. (8)
 - (i) Write R as a set of ordered pairs.
 - (ii) Draw its directed graph.
 - (iii) Find R^{-1} .

b. Prove that $n! \ge 2^n$ for $n \ge 4$, by using the principle of mathematical induction.

(8)

(8)

- Q.6 a. Let I be the set of integers and R be a binary relation defined on set I as $R = \{(x, y) | x \equiv y \pmod{3}, x \in I, y \in I\}$, show that R is an equivalence relation. (8)
 - b. Prove that if L is a bounded distributive lattice and if a complement exists in L, it is unique. (8)
- **Q.7** a. Consider the functions $f: R \rightarrow R$ and $g: R \rightarrow R$, defined by f(x) = 2x + 3 and $g(x) = x^2 + 1$. Find the composite functions (gof)(x) and (fog)(x). (8)
 - b. Let $X = \{a, b, c\}$. Define $f : X \rightarrow X$ such that $f = \{(a, b), (b, a), (c, c)\}$. Find:
 - (i) f^{-1} (ii) f^{2} (iii) f^{3}
 - (iv) f^4
- Q.8 a. Show that the set of rational numbers Q forms a group under the binary operation * defined by a * b = a + b ab, for all a, b ∈ Q. Is this group abelian?
 - b. How many generators are there of the cyclic group of order 8? (8)
- Q.9 a. Determine the group code (3, 6) using parity check Matrix H given by (8)

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

b. Define Ring. Prove that if a, $b \in (R, +, \bullet)$, then $(a + b)^2 = a^2 + a \cdot b + b \cdot a + b^2$, where by x^2 we mean $x \cdot x$. (8)