AMIETE - CS/IT {NEW SCHEME}

Time: 3 Hours

JUNE 2014

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions, selecting at least TWO questions from each part, each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

- a. The material used for forming N-type semiconductor is
 - (A) Boron

(B) Arsenic

(C) Aluminium

- (D) Gallium
- b. The forward voltage drop across an ideal diode is
 - (A) 0.3 V

(B) 0.7 V

(C) 0.0 V

- (**D**) Infinity
- c. The voltage V_0 in the circuit shown below is $(V_Z = 9V \text{ and } I_{ZT} = 20mA)$

Fig.1

1

(A) 30 V

(B) 9 V

(**C**) 10 V

- **(D)** 20 V
- d. The value of I_c for a silicon transistor that has an $\alpha_{DC} = 0.98$ and $I_B = 100 \mu A$ is
 - (A) 4.9 mA

(B) 5.4 mA

(C) 3.9 mA

(D) 5.9 mA

DOI 1	NO	
ROLL	NU.	

- e. The value of closed loop voltage gain for the negative feedback amplifier with open loop gain $A_o = 100000$ and $\beta = \frac{1}{100}$ is
 - **(A)** 90

(B) 99

(C) 99.9

(D) 102.3

- f. $(423)_{10} = ()_{16}$
 - **(A)** 1A7

(B) 117

(C) 1107

(D) 2A7

- g. $x + \overline{x}y =$
 - (A) x

(B) x + y

(C) $\overline{x} + y$

- **(D)** $x + \overline{y}$
- h. In a K-map, looping an octet of adjacent 1s eliminates
 - (A) One variable

- **(B)** Two variables
- (C) Three variables
- (D) Four variables
- i. 2's complement of 101101 is
 - **(A)** 010011

(B) 010010

(C) 100010

- **(D)** 011100
- j. In a Mod-16 counter, the output from the last flip-flop will have a frequency of ______ of the input frequency
 - (A) Half

(B) One fourth

(C) One eighth

(D) One sixteenth

PART (A) Answer at least TWO Questions. Each question carries 16 marks.

- Q.2 a. Explain the formation of N-type and P-type semiconductors. (4)
 - b. Explain the forward and reverse characteristics of a PN junction diode. (6)
 - c. Calculate the resistivity of Si at 300K. If donor impurity to the extent of 1 part of 10⁸ atoms of Si is added. Find the density of minority carriers and the resistivity.
 (6)

- Q.3 a. Draw the circuit of bridge rectifier & explain its working with the waveforms.Also obtain the expression of its PIV and conversion efficiency.(8)
 - b. Draw the circuits of series clipping circuits and explain its working with waveforms. (8)
- Q.4 a. Explain the operation of NPN transistor with neat diagrams and also discuss, its operating modes and applications.(8)
 - b. Draw the circuit of collector to base bias and explain. Also obtain the expression of its stability factor. (8)
- Q.5 a. Explain the capacitor coupled two stage CE amplifier with a neat circuit diagram. (8)
 - b. Explain the effect of negative feedback on Input Impedance, Output Impedance and bandwidth of voltage series and current shunt feedback amplifier. (8)

PART (B) Answer at least TWO Questions. Each question carries 16 marks.

- Q.6 a. What are the advantages and limitations of digital techniques? (4)
 - b. Explain BCD code and compare it with binary code. (4)
 - c. Perform the following conversions:
 - (i) $(1001.101)_2 = ()_{10}, (10101)_2 = ()_{16}$
 - (ii) $(-42)_{10} = ()_{10}$

(iii)
$$(4FF)_{16} = ()_8$$
 (4)

- d. What are gray codes? Discuss its properties and applications in digital systems. Convert $(11101)_2$ into gray code. (4)
- Q.7 a. Explain the universality of NAND and NOR gates. (4)
 - b. Simplify the expression $y = \overline{C}(\overline{A}\overline{B}\overline{D} + D) + A\overline{B}C + \overline{D}$ using Karnaugh map.(8)
 - c. Implement two input XOR using four NAND gates only. (4)
- Q.8 a. Draw the block diagram of a 5 bit parallel adder circuit and explain. (4)

3

- b. What is a Decoder? Explain with a diagram the working of a 3 line to 8 line decoder. (8)
- c. Implement full subtractor using 3×8 multiplexers. (4)

ROLL NO.	

- Q.9 a. Explain the working of a clocked D flip flop with neat diagram and waveforms. Implement T flip-flop using D flip-flop. (8)
 - b. Draw the diagram of a Mod-8 Counter and explain its working with waveforms. (8)