Code: DE57 Subject: NETWORKS AND TRANSMISSION LINES

### **DIDIETE - ET (NEW SCHEME)**

**JUNE 2012** Time: 3 Hours Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Ouestion 1 is compulsory and carries 20 marks. Answer to O.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

#### Choose the correct or the best alternative in the following: 0.1

 $(2\times10)$ 

- a. Which of the following is an ideal voltage source?

  - (A) Voltage independent of current (B) Current independent of voltage
  - (**C**) Both (**A**) and (**B**)
- **(D)** None of the above
- b. The voltage due to self inductance and mutual inductance in the coil as shown in Fig. 1.

$$(\mathbf{A}) \ \mathbf{V}_1 = \mathbf{L}_1 \frac{\mathrm{di}_1}{\mathrm{dt}} - \frac{\mathbf{M} \mathrm{di}_2}{\mathrm{dt}}$$

**(B)** 
$$V_1 = L_2 \frac{di_1}{dt} + \frac{M_1 di_2}{dt}$$

(C) 
$$V_1 = L_1 \frac{di_1}{dt} + \frac{Mdi_2}{dt}$$

$$\textbf{(D)} \ \ V_1 = L_2 \, \frac{di_1}{dt} + \frac{Mdi}{dt}$$

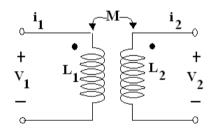



Fig. 1

c. The Laplace transform F(s) of a time function f(t) is defined as

(A) 
$$\mathcal{L}[f(t)] = F(s) = \int_{0}^{\infty} f(t).e^{-st}dt$$
 (B)  $F(s) = \int_{\infty}^{0} f(t).e^{-st}dt$   
(C)  $F(s) = \int_{-\infty}^{\infty} f(t).e^{-st}dt$  (D)  $F(s) = \int_{0}^{1} f(t).e^{-st}dt$ 

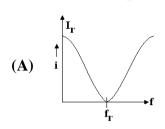
**(B)** 
$$F(s) = \int_{\infty}^{0} f(t) \cdot e^{-st} dt$$

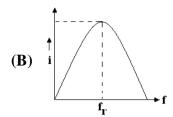
(C) 
$$F(s) = \int_{-\infty}^{\infty} f(t) \cdot e^{-st} dt$$

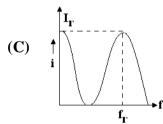
**(D)** 
$$F(s) = \int_{0}^{1} f(t) \cdot e^{-st} dt$$

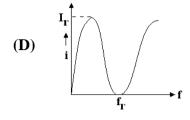
d. The laplace transform of  $\sin \omega_0 t$  is

$$(\mathbf{A}) \; \frac{\mathrm{s}^2}{\omega_0^2 + \mathrm{s}^2}$$

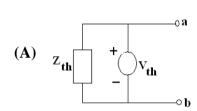

$$(B) \frac{s}{\omega_0^2 + s^2}$$

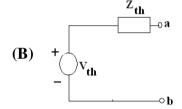

(C) 
$$\frac{\omega_0}{s^2 + \omega_0^2}$$

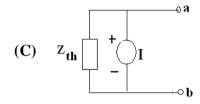

**(D)** 
$$\frac{1}{s^2 + \omega_0^2}$$

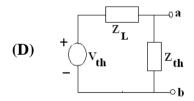

#### Subject: NETWORKS AND TRANSMISSION LINES Code: DE57

e. The current response of a series resonant RLC circuit is




f. Thevenin's equivalent circuit of a linear active network is









The characteristics impedance of a T network is

(A) 
$$Z_{OT} = \sqrt{\frac{Z_1}{Z_1 + 4Z_2}}$$

**(B)** 
$$Z_{OT} = \sqrt{\frac{Z_2}{\frac{Z_1}{4} + Z_2}}$$

(C) 
$$Z_{OT} = \sqrt{Z_1 Z_2 \left(1 + \frac{Z_1}{4Z_2}\right)}$$
 (D)  $Z_{OT} = \sqrt{\left(1 + \frac{Z_1}{4Z_2}\right)}Z_2$ 

**(D)** 
$$Z_{OT} = \sqrt{1 + \frac{Z_1}{4Z_2}Z_2}$$

h. The reflection coefficient K is

(A) 
$$|K| = \frac{|V_{max}| - |V_{min}|}{|V_{max}| + |V_{min}|}$$
  
(C)  $|K| = \frac{|V_{max}|}{|V_{min}|}$ 

(B) 
$$|K| = \frac{|V_{max}| + |V_{min}|}{|V_{max}| - |V_{min}|}$$
  
(D)  $|K| = \frac{|V_{min}|}{|V_{max}|}$ 

$$(\mathbf{C}) |\mathbf{K}| = \frac{|\mathbf{V}_{\text{max}}|}{|\mathbf{V}_{\text{min}}|}$$

$$(\mathbf{D}) |\mathbf{K}| = \frac{|\mathbf{V}_{\min}|}{|\mathbf{V}_{\max}|}$$

## Code: DE57 Subject: NETWORKS AND TRANSMISSION LINES

- i. SWR (Standing Wave Ratio) is
  - **(A)** S = 1 + |K|

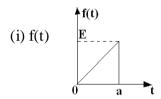
**(B)** S = 1 - |K|

(C)  $S = \frac{1+|K|}{1-|K|}$ 

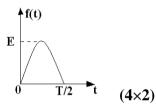
- **(D)**  $S = \frac{1 |K|}{1 + |K|}$
- i. Smith chart can be used to
  - (A) plot an impedance
- (B) determine VSWR (Voltage Standing Wave Ratio)
- **(C)** None of the above
- **(D)** Both **(A)** and **(B)**

# Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- **Q.2** a. Find the laplace transform of the following functions:
  - (i)  $f(t)=t^2$

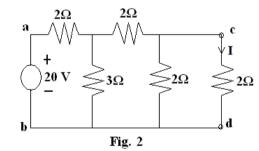

(ii) ramp function  $\{f(t) = t\}$ 

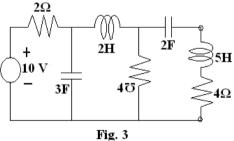
(iii)  $f(t)=\sin \omega t$ 


(iv)  $f(t) = t^n$ 

 $(4\times2)$ 

b. Find the laplace transform of given functions:



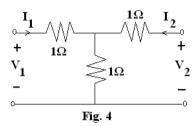


(ii) half cycle of sine wave



Q.3 a. Verify the reciprocity theorem for the network as shown in Fig. 2



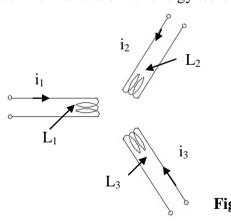





- b. Draw the dual for the given network in Fig. 3. (8) (Mark nodes in each of the loop and a reference node outside circuit)
- Q.4 a. Draw the expressions for resonant frequency, selectivity, bandwidth and Q factor for a series resonant RLC circuit. (4×2)
  - b. An induction of 0.5H, a resistance of  $5\Omega$  and a capacitance of  $8\mu F$  are in series across a 220 V ac supply. Calculate the frequency at which the circuit resonates. Find the current at resonance, bandwidth half power frequencies and the voltage across the capacitance at resonance. (4×2)

### Code: DE57 Subject: NETWORKS AND TRANSMISSION LINES

**Q.5** a. Draw the relation between


- (i) y and z parameter
- (ii) Transmission line parameters and z parameters. (4+4)
- b. Two identical sections of T networks are connected in cascade. Obtain the circuit parameters of the resulting circuit (Fig. 4). (4+4)



 ${\bf Q.6}$  a. Derive the expression for  $Z_o$  and  $\gamma$  of a line composed of cascaded T sections.

b. The primary line constants of a transmission line/km:R=6 $\Omega$ , L=2.2 mH, C=0.005 $\mu$ F, G=0.25 $\mu$ °U, f=800 Hz. Calculate

- (i) attenuation suffered by the signal after travelling a distance of 50 km at the given frequency
- (ii) velocity by which the signal travels through the line. (8)
- **Q.7** a. A 50 MHz open wire line is to be built of copper wire  $[\varepsilon_r = 1]$  of diameter 3.264 mm,  $R_o = 425 \ \Omega$ . Find
  - (i) the desired spacing 'd'
  - (ii) calculate the total L & C of 5 m of this line if the line is dissipationless. (8)
  - b. Explain how a transmission line can be used as
    - (i) impedance transformer
- (ii) impedance inverter
- (iii) coupling to an antenna
- (iv) input impedance of this line.  $(4\times2)$
- Q.8 a. What is inductance? Derive relation for energy stored in inductor. (8)



- b. Find emf equation for three mutually coupled inductors as Fig. 5. (8)
- Q.9 a. Derive the expressions for the for the elements of m-derived (i) T filter (ii)  $\pi$ -filter. (4+4)
  - b. Design a prototype band pass filter with cut-off frequencies 1.5 kHz and 5 kHz design impedance of  $500\Omega$ . (8)