Diplete - ET/CS (NEW SCHEME)

Time: 3 Hours

JUNE 2012

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. The value of $\lim_{x \to 1} (x)^{\frac{1}{x-1}}$ is

$$(\mathbf{C}) e^2$$

- $(\mathbf{D}) e^3$
- b. The value of $\int_{0}^{\pi/2} \sin^{7} x \, dx$ is

(B) 35/16

(C) 16/35

- **(D)** 5/4
- c. Amplitude of $\frac{(3-\sqrt{2} i)^2}{1+2i}$ is

(A)
$$\tan^{-1} \left(\frac{6\sqrt{2} - 4}{12\sqrt{2} - 7} \right)$$

(B)
$$\tan^{-1} \left(\frac{6\sqrt{2} + 14}{12\sqrt{2} - 7} \right)$$

(C)
$$\tan^{-1} \left(\frac{6\sqrt{2} + 4}{12\sqrt{2} + 7} \right)$$

(D)
$$\tan^{-1} \left(\frac{4\sqrt{2} + 7}{5\sqrt{2} - 4} \right)$$

- d. If the co-ordinates of P be (3, 4, 12) then the magnitude of $\overrightarrow{OP}(O \text{ is origin})$ is
 - **(A)** 15

(B) 17

(**C**) 11

- **(D)** 13
- e. The projection of the vector $\hat{i} 2\hat{j} + \hat{k}$ on $4\hat{i} 4\hat{j} + 7\hat{k}$ is
 - **(A)** $\frac{9}{19}$

(B) $\frac{19}{9}$

(C) $\frac{11}{9}$

(D) $\frac{9}{11}$

Subject: ENGINEERING MATHEMATICS - II **Code: DE55 / DC55**

- f. What is the order and degree of the equation $\frac{d^2y}{dx^2} + a^2x = 0$?
 - (A) Order 2, Degree 2
- (B) Order 2, Degree 1
- (C) Order 2, Degree 0
- (**D**) Order 1, Degree 2
- g. If $f(x) = x \sin x$, $(-\pi, \pi)$ then the value of b_n is
 - $(A) \pi$

(**B**) 0

(C) π

- (D) 2π
- h. value of $L\{\cos^2 2t\}$ is
 - (A) $\frac{1}{2} \left(\frac{1}{s} + \frac{s}{s^2 + 16} \right)$
- **(B)** $\left(\frac{1}{s} + \frac{s}{s^2 + 16}\right)$
- (C) $\left(\frac{1}{s} \frac{s}{s^2 + 16}\right)$
- **(D)** $\frac{1}{2} \left(\frac{1}{s} \frac{s}{s^2 + 16} \right)$
- i. value of $L\{e^{2t}\cos^2t\}$ is
 - (A) $\frac{1}{2} \left\{ \frac{1}{s+2} \frac{s-2}{(s-2)^2 + 4} \right\}$ (B) $\frac{1}{2} \left\{ \frac{1}{s-2} + \frac{s-2}{(s-2)^2 + 4} \right\}$
 - (C) $\frac{1}{2} \left\{ \frac{1}{s-2} \frac{s-2}{(s-2)^2 + 4} \right\}$
- **(D)** 0
- j. Inverse Laplace transform of $\left\{ \frac{s^2 3s + 4}{s^3} \right\}$ is
 - **(A)** $1+3t+2t^2$

(C) $1+3t-2t^2$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- a. Evaluate $\lim_{x \to \infty} \left(\frac{1}{x}\right)^{2 \sin x}$ **Q.2 (8)**
 - b. Expand $\log (1+e^x)$ in ascending powers of x as far as the term containing x^4 , using Maclaurin's theorem. **(8)**
- a. If $I_n = \int_0^{\pi/2} x^n \sin x \, dx$, n > 1, show that $I_n + n(n-1)I_{n-2} = n(\pi/2)^{n-1}$ **(8)**

Code: DE55 / DC55 Subject: ENGINEERING MATHEMATICS - II

- b. The area enclosed by the hypocycloid $x^{2/3}+y^{2/3}=a^{2/3}$ is revolved about x-axis. Find the volume of the solid generated. (8)
- **Q.4** a. If Z_1 , Z_2 be two complex numbers, show that $|Z_1 + Z_2|^2 + |Z_1 Z_2|^2 = 2(|Z_1|^2 + |Z_2|^2)$ (8)
 - b. If $2\cos\theta = x + \frac{1}{x}$, prove that $2\cos r\theta = x^r + \frac{1}{x^r}$ (8)
- Q.5 a. If a, b, c are the position vectors of the vertices A,B,C of a triangle. Show that the vector area of the triangle is $\frac{1}{2}(b \times c + c \times a + a \times b)$ (8)
 - b. Find the volume of parallelopiped if $\vec{a} = -3\hat{i} + 7\hat{j} + 5\hat{k}$, $\vec{b} = -3\hat{i} + 7\hat{j} 3\hat{k}$ and $\vec{c} = 7\hat{i} 5\hat{j} 3\hat{k}$ are the three co-terminous edges of the parallelopiped. (8)
- **Q.6** a. Solve $(D^2-5D+6)y=e^x\cos 2x$ (8)
 - b. Solve $\frac{d^2y}{dx^2} + 9y = \sec 3x$ (8)
- **Q.7** a. Find a Fourier series to represent x^2 in the interval (-l, l). (8)
 - b. Expand $f(x) = \frac{1}{4} x$, if $0 < x < \frac{1}{2}$ = $x - \frac{3}{4}$, if $\frac{1}{2} < x < 1$ as the Fourier series of sine terms. (8)
- Q.8 a. Find the Laplace transform of sin 2t cos 3t (8)
 - b. Find Laplace transform of $\frac{\cos at \cos bt}{t}$ (8)
- **Q.9** a. Evaluate $L^{-1} \left\{ \frac{s^2}{(s^2 + a^2)^2} \right\}$ (8)
 - b. Apply convolution theorem to solve $L^{-1} \left\{ \frac{1}{(s^2 + 1)(s^2 + 9)} \right\}$ (8)