ROLL NO. _

Code: DE51/DC51 Subject: ENGINEERING MATHEMATICS - I

Diplete – Et/cs (NEW SCHEME)

Time: 3 Hours

JUNE 2012

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a.
$$\ell t \frac{x-1}{\log x}$$
 is:
(A) 1
(B) $\frac{1}{2}$
(C) 2
(D) -1

b. The centroid of the triangle with vertices (2, 7), (3, 4) and (-6, 4) is

$$(\mathbf{A}) \left(5, \frac{1}{3}\right) \qquad \qquad (\mathbf{B}) \left(\frac{1}{3}, -5\right)$$
$$(\mathbf{C}) \left(-\frac{1}{3}, 5\right) \qquad \qquad (\mathbf{D}) \left(-5, \frac{1}{3}\right)$$

c. $\int \sin^3 x \, dx$ is (A) $\frac{3}{4} \sin x + \frac{1}{12} \sin 3x + C$ (B) $-\frac{3}{4} \cos x + \frac{1}{12} \cos 3x + C$ (C) $\frac{3}{4} \sin x + \frac{1}{12} \cos 3x + C$ (D) $-\frac{3}{4} \cos x - \frac{1}{12} \cos 3x + C$

d. If
$$\Delta = \begin{vmatrix} \omega & \omega^2 & 1 \\ 1 & \omega & \omega^2 \\ \omega^2 & 1 & \omega \end{vmatrix}$$
, then the value of Δ is
(A) -1 (B) 1
(C) 2 (D) 0

ROLL NO. ____

Code: DE51/DC5

DE51/DC51	Subject: ENGINEERING MATHEMATICS - I
-----------	--------------------------------------

J			
e. If $3\begin{bmatrix} x & y \\ z & w \end{bmatrix} = \begin{bmatrix} x & 6 \\ -1 & 2w \end{bmatrix} + \begin{bmatrix} 4 \\ z+w \end{bmatrix}$	$\begin{bmatrix} x + y \\ 3 \end{bmatrix}$, then x, y, z, w is equal to		
(A) 1, 2, 3, 4 (C) -1, 3, 2, 4	(B) 2, 4, 1, 3 (D) 1, -2, 1, 4		
f. The order and degree of differential equation $\frac{d^2y}{dx^2} = 1 + \sqrt{\frac{dy}{dx}}$ is			
(A) $O = 2, D = 1$ (C) $O = 2, D = 3$	(B) $O = 1, D = 1$ (D) $O = 2, D = 2$		
g. The middle term in the expansion of $\left(x + \frac{1}{x}\right)^{12}$ is			
(A) 1001(C) 1004	(B) 923(D) 924		
h. The value of $2\cos\left(\frac{\pi}{4} + \theta\right)\cos\left(\frac{\pi}{4} - \theta\right)$ is			
(A) $\sin 2\theta$ (C) $\sin \theta \cos \theta$	 (B) cos 2θ (D) cos 3θ 		
i. The distance between the pair of points $A(am_1^2, 2am_1)B(am_2^2, 2am_2)$ is			
(A) $a(m_2 - m_1)\sqrt{(m_2 + m_1)^2 + 4}$	(B) $a(m_2 + m_1)\sqrt{(m_2 - m_1)^2 + 4}$		
(C) $a(m_1 + m_2)\sqrt{(m_1 + m_2)^2 + 4}$	(D) $a(m_2 - m_1)\sqrt{(m_2 + m_1)^2 - 4}$		
j. If $y = \log(\sec x + \tan x)$, then $\frac{dy}{dx}$	is		
(A) sec x cosec x (C) sec x	(B) tan x (D) sec x tan x		
Answer any FIVE Questions out of EIGHT Questions.			
Each question carries 16 marks.			
a. If $x\sqrt{1+y} + y\sqrt{1+x} = 0$, prove the	hat $\frac{dy}{dx} = -\frac{1}{(1+x)^2}$. (8)		
b. Find all the points of maxima minima and the corresponding maximum a			
minimum values of the function $f(x) = -x^3 + 12x^2 - 5$.			

Q.3 a. Evaluate
$$\int \frac{\sec^2 x}{5\tan^2 x - 12\tan x + 14} dx$$
 (8)

b. Evaluate
$$\int_{0}^{\pi/4} \log(1 + \tan x) dx$$
 (8)

Q.2

ROLL NO.

Code: DE51/DC51 Subject: ENGINEERING MATHEMATICS - I

Q.4 a. Solve the following equation
$$\begin{vmatrix} x-2 & 2x-3 & 3x-4 \\ x-4 & 2x-9 & 3x-16 \\ x-8 & 2x-27 & 3x-64 \end{vmatrix} = 0$$
 (8)

b. Solve with the help of matrices the simultaneous equations: x + y + z = 3 x + 2y + 3z = 4 (8) x + 4y + 9z = 6

Q.5 a. Solve
$$\frac{dy}{dx} = \cos^3 x \sin^4 x + x \sqrt{2x+1}$$
 (8)

b. Solve
$$\frac{dy}{dx} + y \sec x = \tan x$$
 (8)

Q.6 a. Find the term independent of x in the expansion of $\left(2x^2 - \frac{1}{x}\right)^{1/2}$ (8)

b. If the first term of an AP is 2 and the sum of first five terms is equal to one fourth of the sum of the next five terms, find the sum of first 30 terms. (8)

Q.7 a. Prove that
$$\cos 20^{\circ} \cos 30^{\circ} \cos 40^{\circ} \cos 80^{\circ} = \frac{\sqrt{3}}{16}$$
 (8)

b. If
$$A + B + C = \pi$$
, show that $\sin A + \sin B + \sin C = 4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$ (8)

Q.8 a. Find the equation of a line passing through the point (2, 3) and making an angle of 45° with the line 3x + y - 5 = 0. (8)

b. If p is the length of the perpendicular from the origin to the line $\frac{x}{a} + \frac{y}{b} = 1$, then prove that $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$ (8)

- **Q.9** a. Find the equation of the circle passing through the point (2, 4) & has its centre at the intersection of lines x y = 4 and 2x + 3y = -7. (8)
 - b. Show that $4x^2 + 16y^2 24x 32y 12 = 0$ is the equation of an ellipse. Find its vertices, foci, eccentricity, directrices, major axis, minor and latusrectum.

(8)

3