\qquad

DipIETE - ET/CS (NEW SCHEME)

Time: 3 Hours
PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.
NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. $\underset{x \rightarrow 1}{\ell t} \frac{x-1}{\log x}$ is :
(A) 1
(B) $\frac{1}{2}$
(C) 2
(D) -1
b. The centroid of the triangle with vertices $(2,7),(3,4)$ and $(-6,4)$ is
(A) $\left(5, \frac{1}{3}\right)$
(В) $\left(\frac{1}{3},-5\right)$
(C) $\left(-\frac{1}{3}, 5\right)$
(D) $\left(-5, \frac{1}{3}\right)$
c. $\int \sin ^{3} x d x$ is
(A) $\frac{3}{4} \sin \mathrm{x}+\frac{1}{12} \sin 3 \mathrm{x}+\mathrm{C}$
(B) $-\frac{3}{4} \cos x+\frac{1}{12} \cos 3 x+C$
(C) $\frac{3}{4} \sin x+\frac{1}{12} \cos 3 x+C$
(D) $-\frac{3}{4} \cos x-\frac{1}{12} \cos 3 x+C$
d. If $\Delta=\left|\begin{array}{ccc}\omega & \omega^{2} & 1 \\ 1 & \omega & \omega^{2} \\ \omega^{2} & 1 & \omega\end{array}\right|$, then the value of Δ is
(A) -1
(B) 1
(C) 2
(D) 0
e. If $3\left[\begin{array}{ll}x & y \\ z & w\end{array}\right]=\left[\begin{array}{cc}x & 6 \\ -1 & 2 w\end{array}\right]+\left[\begin{array}{cc}4 & x+y \\ z+w & 3\end{array}\right]$, then x, y, z, w is equal to
(A) 1, 2, 3, 4
(B) 2, 4, 1, 3
(C) $-1,3,2,4$
(D) $1,-2,1,4$
f. The order and degree of differential equation $\frac{d^{2} y}{d x^{2}}=1+\sqrt{\frac{d y}{d x}}$ is
(A) $\mathrm{O}=2, \mathrm{D}=1$
(B) $\mathrm{O}=1, \mathrm{D}=1$
(C) $\mathrm{O}=2, \mathrm{D}=3$
(D) $\mathrm{O}=2, \mathrm{D}=2$
g. The middle term in the expansion of $\left(x+\frac{1}{x}\right)^{12}$ is
(A) 1001
(B) 923
(C) 1004
(D) 924
h. The value of $2 \cos \left(\frac{\pi}{4}+\theta\right) \cos \left(\frac{\pi}{4}-\theta\right)$ is
(A) $\sin 2 \theta$
(B) $\cos 2 \theta$
(C) $\sin \theta \cos \theta$
(D) $\cos 3 \theta$
i. The distance between the pair of points $\mathrm{A}\left(\mathrm{am}_{1}^{2}, 2 \mathrm{am}_{1}\right), \mathrm{B}\left(\mathrm{am}_{2}^{2}, 2 \mathrm{am}_{2}\right)$ is
(A) $a\left(m_{2}-m_{1}\right) \sqrt{\left(m_{2}+m_{1}\right)^{2}+4}$
(B) $a\left(m_{2}+m_{1}\right) \sqrt{\left(m_{2}-m_{1}\right)^{2}+4}$
(C) $a\left(m_{1}+m_{2}\right) \sqrt{\left(m_{1}+m_{2}\right)^{2}+4}$
(D) $a\left(m_{2}-m_{1}\right) \sqrt{\left(m_{2}+m_{1}\right)^{2}-4}$
j. If $y=\log (\sec x+\tan x)$, then $\frac{d y}{d x}$ is
(A) $\sec x \operatorname{cosec} x$
(B) $\tan x$
(C) $\sec x$
(D) $\sec x \tan x$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.
Q. 2 a. If $\mathrm{x} \sqrt{1+\mathrm{y}}+\mathrm{y} \sqrt{1+\mathrm{x}}=0$, prove that $\frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{1}{(1+\mathrm{x})^{2}}$.
b. Find all the points of maxima minima and the corresponding maximum and minimum values of the function $f(x)=-x^{3}+12 x^{2}-5$.
Q. 3 a. Evaluate $\int \frac{\sec ^{2} x}{5 \tan ^{2} x-12 \tan x+14} d x$
b. Evaluate $\int_{0}^{\pi / 4} \log (1+\tan x) d x$

Code: DE51/DC51 Subject: ENGINEERING MATHEMATICS - I

Q. $4 \quad$ a. Solve the following equation $\left|\begin{array}{ccc}x-2 & 2 x-3 & 3 x-4 \\ x-4 & 2 x-9 & 3 x-16 \\ x-8 & 2 x-27 & 3 x-64\end{array}\right|=0$
b. Solve with the help of matrices the simultaneous equations:

$$
\begin{align*}
& x+y+z=3 \\
& x+2 y+3 z=4 \tag{8}\\
& x+4 y+9 z=6
\end{align*}
$$

Q. 5 a. Solve $\frac{d y}{d x}=\cos ^{3} x \sin ^{4} x+x \sqrt{2 x+1}$
b. Solve $\frac{d y}{d x}+y \sec x=\tan x$
Q. 6 a. Find the term independent of x in the expansion of $\left(2 x^{2}-\frac{1}{x}\right)^{12}$
b. If the first term of an AP is 2 and the sum of first five terms is equal to one fourth of the sum of the next five terms, find the sum of first 30 terms.
Q. 7 a. Prove that $\cos 20^{\circ} \cos 30^{\circ} \cos 40^{\circ} \cos 80^{\circ}=\frac{\sqrt{3}}{16}$
b. If $A+B+C=\pi$, show that $\sin A+\sin B+\sin C=4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$
Q. 8 a. Find the equation of a line passing through the point (2, 3) and making an angle of 45° with the line $3 x+y-5=0$.
b. If p is the length of the perpendicular from the origin to the line $\frac{x}{a}+\frac{y}{b}=1$, then prove that $\frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}$
Q. 9 a. Find the equation of the circle passing through the point $(2,4) \&$ has its centre at the intersection of lines $x-y=4$ and $2 x+3 y=-7$.
b. Show that $4 x^{2}+16 y^{2}-24 x-32 y-12=0$ is the equation of an ellipse. Find its vertices, foci, eccentricity, directrices, major axis, minor and latusrectum.
(8)

